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INTRODUÇÃO: 

Este relatório descreve as atividades de pós-doutorado que o bolsista (processo 2016/16932-8) 

esteve envolvido entre ao 01/11/2016 e ao 31/10/2018 no âmbito do Projeto SOS–CHUVA no seio 

do Instituo Nacional de Pesquisas Espaciais (INPE), no Centro de Previsão de Tempo e Estudos 

Climáticos (CPTEC), na Divisão de Satélites e Sistemas Ambientais (DSA) em Cachoeira Paulista 

sob a direção de Luiz Augusto Toledo Machado.  

Neste período de dois anos o objetivo principal do estudo foi desenvolver uma classificação de 

hidrometeoros para o radar banda X de dupla polarização. As classificações são todas realizadas para 

regiões de latitudes médias e esta classificação seria adaptada para a região tropical. Para tanto, foi 

necessária dispender um longo período de desenvolvimento de uma técnica que não se baseia em 

limiares pré-determinados, mas define as classes naturalmente para a região em estudo. Foi 

selecionado uma nova técnica baseada em agrupamentos, não supervisionada, que permitia definir 

classes de forma natural, sem existência de classes pré-definidas. Essa técnica foi inicialmente 

analisada para a Amazônia, onde existia um grande conjunto de dados auxiliares e de características 

pré conhecidas, principalmente me função dos voos de aeronaves e estudos durante o GoAmazon. 

Com base na classificação e sua validação os estudos foram voltados a aplicação em diversas 

atividades voltadas a previsão imediata. Cita-se, a análise da evolução de hidrometeoros que 

antecedem as tempestades, a classificação de hidrometeoros para análise dos processos de 

eletrificação e consequente uso em assimilação de dados e finalmente, na análise dos hidrometeoros 

previstos pelos modelos com microfísica explicita e sua comparação com as observações de radares. 

Todos esses trabalhos foram ou estão sendo submetidos a revistas especializadas e a realização de 

Tese de Doutorado ou Mestrado. 

Apresentamos abaixo uma descrição mais detalhada destes tópicos, contudo, podemos afirmar 

que esses estudos foram fundamentais para a evolução do projeto Temático. 
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1 - CLASSIFICACOES DOS HIDROMETEOROS 

a) Desenvolvimento da técnica chamada “clustering” 

Hoje em dia, novos radares equipados com dupla polarização permitem conseguir mais informações 

sobre as partículas que constituem as nuvens. Com quatro variáveis (contra somente uma para os 

radares “clássicos”), esses radares polarimétricos podem nos informar sobre o tamanho, a forma, a 

orientação e a fase dos hidrometeoros (conjunto de partículas de agua líquida ou sólida em queda ou 

suspenção na atmosfera). Desde o surgimento desses radares, várias técnicas foram desenvolvidas 

para identificar diretamente o tipo do hidrometeoro dominante na nuvem.  

Embora a classificação dos hidrometeoros a partir dos radares com dupla polarização seja muito 

conhecida desde os anos 2000, até no início do ano 2016 ainda nenhuma foi desenvolvida para as 

regiões tropicais. Assim optamos por desenvolver uma nova classificação dos hidrometeoros para as 

regiões tropicais brasileiras a partir do radar da banda X envolvido no projeto SOS-CHUVA. 

A maioria das classificações (booleano, logica fuzzy, entre outras) usam limites que podem ser 

específicos para cada hidrometeoro, cada região, ou ainda cada comprimento de onda. A metodologia 

de “unsupervised clustering” permite precisamente deixar toda a liberdade o conjunto dos dados 

polarmétricos sem nenhum a priori. Das principais metodologias de clustering, foi escolhido seguir o 

artigo de Grazioli et al 2015, que se baseia num tipo específico chamado “Agglomerative Hierarchical 

Clustering”. Nesta metodologia apresenta-se uma sequência de iterações que agrupem N objetos em 

nc clusters fazendo com que os objetos de um mesmo cluster apresentem mais similaridades (físicas) 

que àqueles que pertençam das outros. No início da metodologia, cada objeto corresponde a um 

cluster (N = nc). Depois de uma iteração, fica sempre N objetos, mas separados desta vez dentro nc-1 

clusters. Essas iterações devem ser repetidas até que no final fiquem N objetos para somente um 

cluster. Posteriormente, o utilizador poderá escolher quando tiver a “melhor” distribuição entre 

clusters (por exemplo: 5, 6, ou mais clusters) com ferramentas estatísticas e sua interpretação pessoal.  
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Todas as informações sobre o desenvolvimento e as características dessa técnica de classificação são 

disponíveis no artigo em curso de publicação no Atmospheric Measurement Techniques (AMT) e 

apresentados no anexo 1. 

 

b) Resultados do GO-AMAZON 

Os dados polarimétricos usados foram coletados com o radar polarimétrico da banda X. Como a 

técnica de clustering precisa de muitos dados para aprender / se construir (data-driven) e considerando 

que no início desse trabalho havia poucos eventos no projeto de SOS-CHUVA, escolhemos 

desenvolver a técnica com os dados do projeto Go-Amazon ACRIDICON (mesmo radar) ocorrido 

em Manaus no ano de 2014 (Machado et al. 2017). Deve notar-se que como as regiões estratiformes 

e convectivas são caracterizadas pelas assinaturas dinâmica e microfísica diferentes, uma separação 

entre os dois foi feita no conjunto dos dados, assim como entre as estações chuvosa e seca.  

Em geral, as regiões estratiformes são constituídas de 5 tipos de hidrometeoros: chuva fraca, chuva, 

agua-neve, neve, e gelos, enquanto que as regiões convectivas são feitas de: chuva fraca, chuva 

moderada, chuva forte, graupels, neves, e gelos. A diferença principal entre as estações chuvosa e 

seca resulta da existência de dois tipos de graupels (baixa e alta densidade) na estação seca, nas 

regiões convectivas. Já na estação chuvosa observa-se somente um tipo geral de graupel. Por último, 

foi demonstrado que os hidrometeoros de neves e gelos são caracterizadas pelas assinaturas 

polarimétricas mais alta comparativamente as latitudes médias e poderia ser explicada pela umidade 

mais alta nas regiões tropicais.  

Note-se que todos os resultados são disponíveis no artigo em curso de publicação no Atmospheric 

Measurement Techniques (AMT) e apresentados no anexo 1. Este artigo está na fase final de 

aceitação, já tendo passado pela discussão aberta e pelos revisores. 
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c) Resultados do SOS-CHUVA 

A mesma metodologia de classificação dos hidrometeoros foi aplicada aos dados coletados pelo radar 

banda X na região de Campinas-São Paulo durante o projeto do SOS-CHUVA e a diferença entre as 

regiões estratiformes e convectivas. Assim foi demonstrado que de uma forma semelhante a Manaus, 

a região de precipitação estratiforme é composta de: chuva fraca, chuva, agua- neve, neve, e gelos; 

enquanto que a região de precipitação convectiva é formada de três tipos de chuva (fraca, moderado, 

forte), granizo, dois tipos de graupel (alta e baixa densidade), neve e gelos.  

Numa segunda parte, uma atenção particular foi dedicada nas células convectivas mais severas que 

estão no centro das preocupações do projeto SOS-CHUVA. Por isso, a evolução microfísica de 23 

células convectivas foi investigada na região de Campinas. De maneira geral, foi demonstrado que as 

células convectivas seguem um ciclo de vida normal com os volumes de: chuva forte, granizo, 

graupels, e neves que são relacionados às taxa de raios. Assim quando tem mais raios, tem mais desses 

4 tipos de hidrometeoros e por conseguinte constituem os melhores indicadores para prevenir os riscos 

potencias. Além disso, foi demostrado que as altitudes associadas ao graupel e gelos (tipos de 

hidrometeoros os mais importantes sobre a eletrificação da nuvem) estão em conformidade com 

estudos anteriores realizadas no EUA e Japão. Assim, seguir a evolução das altitudes em relações 

com os graupel e gelos pode informar-nos sobre a intensidade da atividade eléctrica.  

Todos os resultados são disponíveis no artigo em curso de publicação no Weather and Forecasting e 

apresentado no anexo 2.  

 

d) Assimilação de dados de descargas elétricas 

Este estudo trata da Dissertação de Mestrado da aluna Carolina Araújo que analisou o uso dos dados 

do sensor de descargas elétricas do GOES em modelos de alta resolução. A classificação de nuvem 

foi realizada para caracterizar os perfis de hidrometeoros em tempestades com potencial de 
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assimilação de diferentes espécies de partículas na redução do spin up do modelo para previsão no 

intervalo de 0 a 6 horas. 

A análise de classificação hidrometeoros (HC) permitiu caracterizar a distribuição vertical de 

hidrometeoros para diferentes classes de densidade de descargas elétricas. Essas classes de descargas 

elétricas que definem os perfis a serem assimilados no modelo. Os resultados mostraram seis classes 

distintas de hidrometeoros com diferentes distribuições em função das classes de eletrificação. Nota-

se que com o aumento da intensidade de eletrificação da nuvem a altura de maior concentração de 

partículas graupel e gelo são encontradas em partes distintas da nuvem. Na classe mais baixa de 

eletrificação, por exemplo, a concentração máxima graupel é de 7,5 km e a maior quantidade de gelo 

encontra-se a cerca de 9,5 km, e para de maior atividade elétrica as concentrações máximas de desses 

hidrometeoros são cerca de 8 km e 13 km respectivamente. Considerando que o cristal de gelo e 

graupel são as principais partículas no processo de eletrificação de nuvem, já que eles formam duas 

regiões opostas cobrado (gelo-negativo, graupel-positivo). Esta distância entre essas regiões impacta 

na força do campo elétrico, uma vez que a distância aumenta e intensifica a força do campo elétrico. 

Esse trabalho está sendo finalizado para ser submetida ao um Jornal da American Meteorological 

Society. 

 

e) Comparação entre diferentes parametrizações de microfísica de nuvens. 

Este trabalho é o que se apresenta em fase mais incipiente. Ele utiliza a classificação de nuvens para 

comparar simulações elaboradas com diferentes microfísicas das nuvens. A aluna Lianet Pardo está 

realizando o Doutorado no INPE e utilizando estes estudos. Os resultados estão sendo analisados, 

com base em um conjunto de classificações de hidrometeoro dos eventos como referência a análise 

da melhor parametrização de microfísica das nuvens. 

Esses estudos, bem como futuros outros irão se beneficiar desta ferramenta de análise de imagens de 

radares, bem como o possível desenvolvimento de um produto de nowcasting. 
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2 – PARTICIPAÇÕES NAS CONFERENCIAS 

Durante os dois anos de pós-doutorado, varias comunicações foram feitas no Brasil através de 

conferências nacionais ou internacionais. Assim, os resultados foram apresentados nos Workshops 

do projeto SOS-CHUVA em São Paulo (dezembro 2016) e em Piracicaba (dezembro 2017). Além 

disso, o bolsista participou da campanha de medições efetuada na região de Campinas durante a 

última semana de novembro 2017, em apoio das medições do radar da banda X.  

Por último, os resultados foram apresentados na 38 Conferência do American Meteorology Society 

sobre os radares meteorológicos que se desenrolou no final de agosto 2017 em Chicago (IL, EUA; cf 

anexo 3). 

 

 

3 – CO-ORIENTAÇÃO DE ALUNO DE MESTRADO  

Durante os dois anos de pós-doutorado, o bolsista teve uma oportunidade de participar a um 

enquadramento de Mestrado. Assim, com o Dr. Luiz Augusto Toledo Machado, orientamos a aluna 

Carolina de Souza Araújo sobre o assunto descrito acima: “Relação entre raios e microfísica para 

potencial uso em assimilação de dados”, que foi defendido o 28 maio 2018 (cf. Anexo 4). Conforme 

mencionado, os resultados obtidos estão sendo preparados para uma publicação e foram aprovados 

para apresentação oral na próxima conferência da American Meteorology Society em Phoenix no 

início do ano 2019.   
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ANEXO 1:  

Ribaud, J.-F., Machado, L. A. T., and Biscaro, T.: X-band dual-polarization radar-based 

hydrometeor classification for Brazilian tropical precipitation systems, Atmos. Meas. Tech. Discuss., 

https://doi.org/10.5194/amt-2018-174, in review, 2018. 

 

 

ANEXO 2:  

Ribaud, J-F and Machado L.A.T. Insight into brazilian microphysical convective clouds observed 

during SOS-CHUVA. Weather and Forecasting, to be submitted, 2019. 

 

 

ANEXO 3: 

J.-F. Ribaud, L.A.T. Machado, and T. Biscaro. Dominant Hydrometeor Type Distributions within 

Brazilian Tropical Precipitation Systems Inferred from X-Band Dual Polarization Radar 

Measurements. Poster, 38th Conference on Radar Meteorology, Chicago, IL, USA, 28 August-1 

September 2017. 

 

 

ANEXO 4: 

Declaraçao de participaçao na banca examinorada final de aluna de Mestrado – Carolina de Souza 

Araújo, 28 de Maio de 2018, INPE/CPTEC, Cachoeira Paulista, SP, Brasil. 



ANEXO 1:  

Ribaud, J.-F., Machado, L. A. T., and Biscaro, T.: X-band dual-polarization radar-based hydrometeor 

classification for Brazilian tropical precipitation systems, Atmos. Meas. Tech. Discuss., 

https://doi.org/10.5194/amt-2018-174, in review, 2018. 
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Abstract.  

The dominant hydrometeor types associated with Brazilian tropical precipitation systems are identified 25 

via research X-band dual-polarization radar deployed in the vicinity of the Manaus region (Amazonas) 

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The present study is 

based on an Agglomerative Hierarchical Clustering (AHC) approach that makes use of dual 

polarimetric radar observables (reflectivity at horizontal polarization ZH, differential reflectivity ZDR, 

specific differential phase KDP, and correlation coefficient ρHV) and temperature data inferred from 30 

sounding balloons. The sensitivity of the agglomerative clustering scheme for measuring the inter-

cluster dissimilarities (linkage criterion) is evaluated through the wet season dataset. Both the weighted 

and Ward linkages exhibit better abilities to retrieve cloud microphysical species, whereas clustering 

outputs associated with the centroid linkage are poorly defined. The AHC method is then applied to 

investigate the microphysical structure of both the wet and dry seasons. The stratiform regions are 35 

composed of five hydrometeor classes: drizzle, rain, wet snow, aggregates, and ice crystals, whereas 

convective echoes are generally associated with light rain, moderate rain, heavy rain, graupels, 

aggregates and ice crystals. The main discrepancy between the wet and dry seasons is the presence of 

both low- and high-density graupels within convective regions, whereas the rainy period exhibits only 

one type of graupel. Finally, aggregate and ice crystal hydrometeors in the tropics are found to exhibit 40 

higher polarimetric values compared to those at mid-latitudes. 

 

Keywords: hydrometeor identification, tropical microphysics, dual-polarization radar, clustering. 
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1. Introduction 45 

 The use of dual-polarization (DPOL) radars over several decades by national weather services as 

well as research laboratories has deeply changed the understanding and forecasting of many 

precipitation events around the world. By using a second orthogonal polarization, such weather radars 

enable inference of the size, shape, orientation, and phase state of different particles detected within the 

sampled cloud. To date, the major advances that have been made as a result of DPOL radar sensitivities 50 

are mainly related to improvement in the distinction between meteorological and non-meteorological 

echoes, attenuation correction, quantitative rainfall estimation, and bulk hydrometeor classification 

(Bringi and Chandrasekar 2001; Bringi et al., 2007). By combining DPOL radar observables (generally, 

reflectivity at horizontal polarization, ZH; differential reflectivity, ZDR; specific differential phase, KDP; 

and correlation coefficient, ρHV) with some extra information such as temperature to locate the freezing 55 

level, the hydrometeor identification task has been the subject of many research studies. Indeed, 

potential benefits from this research topic are numerous such as the evaluation of microphysical 

parametrization in high-resolution numerical weather prediction models (e.g., Augros et al., 2016; 

Wolfensberger and Berne, 2018), investigation of relationships between microphysics and lightning 

(e.g., Ribaud et al. 2016a), and improvement in weather nowcasting for high-impact meteorological 60 

events (hailstorms, flight assistance, road safety). 

 

 Three hydrometeor classification schemes have been developed since the emergence of DPOL 

radar in the 1980s: (i) supervised, (ii) unsupervised, and (iii) semi-supervised techniques (Figure 1).  
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i. The supervised method constitutes, by far, most of the literature and is subdivided into three 65 

different techniques: the boolean tree method, fuzzy logic and the Bayesian approach. Here, the 

supervised technique refers to a priori and arbitrarily identified hydrometeor types from which 

DPOL radar responses have been derived from either theoretical models or empirical 

knowledge. Polarimetric observations are then assigned to the most suitable hydrometeor types 

according to their similarities. 70 

 Boolean method. This technique is the easiest way to identify dominant hydrometeor 

populations and has consequently been the first to be used. The algorithm relies on the 

beforehand definition of the ranges of DPOL radar-observable values for each hydrometeor 

type by the user. Then, a simple Boolean decision is applied to retrieve the dominant 

hydrometeor type (Seliga and Bringi, 1976; Hall et al, 1984; Bringi et al, 1986; Straka and 75 

Zrnić, 1993; Höller et al, 1994). This approach, nevertheless, does not take into account the 

fact that different hydrometeor types can be defined on the same range of values for the 

same polarimetric radar observable and, therefore, frequently leads to misclassification. 

 Fuzzy logic technique (Mendel et al., 1995). This supervised algorithm type fixed the 

previous limitation by allowing a smooth transition of DPOL radar-observable ranges for all 80 

hydrometeor types. The originality of fuzzy logic is its ability to transform sets of nonlinear 

radar data into scalar outputs referring to different microphysical species. In this regard, each 

hydrometeor type distribution is characterized by a membership function coming from either 

T-matrix simulations (Mishchenko and Travis, 1998) or, less frequently, aircraft in situ 

measurements. The hydrometeor inference is finally the result of a combination of 85 
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membership functions and a set of a priori rules defined by the user (Straka et al., 1996; 

Vivekanandan et al., 1999; Liu and Chandrasekar, 2000; Marzano et al, 2006; Park et al., 

2009, Dolan and Rutledge, 2009; Al-Sakka et al., 2013; Thompson et al., 2014). This 

method is relatively simple to implement and computationally inexpensive. Few studies such 

as the Joint Polarization Experiment (Ryzhkov et al., 2005) for hail detection or even the 90 

recent use of a fuzzy logic algorithm as an operational tool for national weather services (Al-

Sakka et al., 2013) have demonstrated the robustness of this hydrometeor classification 

algorithm type in singular environments. 

 Bayesian approach. In this case, the hydrometeor identification task is expressed in a 

probabilistic form based on synthetic data derived from polarimetric radar simulation of 95 

different hydrometeor types (with each one being characterized by a centre and a covariance 

matrix). The final supervised hydrometeor inference is then performed by adapting the 

maximum a posteriori rule. Another interesting attribute of the Bayesian technique resides in 

the appealing possibility of retrieving the liquid water content associated with each 

hydrometeor type (Marzano et al., 2008; Marzano et al., 2010). 100 

ii. More recently, Grazioli et al. (2015) or even Grazioli et al. (2017) proposed an innovative 

unsupervised approach to identifying the dominant hydrometeor distribution within precipitation 

events, where hydrometeor types are retrieved by gathering DPOL radar data observable 

similarities. Indeed, the unsupervised technique refers to a set of unlabelled data observations in 

which the goal is to group them into clusters sharing similar properties based on innate 105 

structures of the data (variance, distribution, etc.) and without using a priori knowledge. To 
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achieve this goal, the authors used an agglomerative hierarchical clustering technique together 

with a spatial constraint on the consistency of the classification (homogeneity). This data-driven 

approach mainly avoids the numerical-scattering simulations used in fuzzy logic, which are 

well-designed for the liquid phase but questionable for ice-phase microphysics. Finally, 110 

interpretation of the clusters (labelling) is done manually.  

iii. Although initially mentioned by Liu and Chandrasekar (2000), the first complete study based on 

a semi-supervised approach was done by Bechini and Chandrasekar (2015), recently followed 

by the works of Wen et al. (2015), Wen et al. (2016) and Besic et al. (2016). This technique 

combines the advantages of the fuzzy logic and clustering methods. The algorithm initially 115 

begins with a fuzzy logic classification, which is then adjusted by a K-means clustering method 

that iteratively allows for rectifying the initial membership function of each hydrometeor type 

according to the observed DPOL radar measurements. In addition, constraints such as 

temperature limits and/or spatial distribution can be implemented in this self-adapting 

methodology. 120 

 

 Overall, these Hydrometeor Classification Algorithms (HCAs) still require in situ aircraft 

validations (especially within convective cores) that are problematic due to their cost and, obviously, 

the danger of obtaining such measurements. Only a few studies have had the opportunity to use limited 

aircraft measurements and generally compared a few isolated in situ images with HCA outputs (Aydin 125 

et al., 1986; El-Magd et al., 2000; Cazenave et al., 2016; Ribaud et al., 2016b). Another limitation of 

these studies using methods such as the fuzzy logic approach is the dependency of their validity, since 
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they are generally both wavelength- and climatically radar-dependent. Although T-matrix simulations 

for a radar wavelength have been theoretically demonstrated, each final algorithm is then tuned by 

giving weights to each DPOL radar observable to allow them to fit as closely as possible with local 130 

ground observations. Finally, one can also see that the related hydrometeor identification literature is 

mainly concerned with the middle latitudes. Indeed, the methods were initially developed for S-band 

radar before being adapted to both C- and X-band radars, and research studies have largely been done in 

North America, Europe, and Oceania.  

 135 

 The present study aims to develop the first HCA for Brazilian tropical precipitation systems via an 

X-band dual-polarization radar used in both the GoAmazon2014/5 and ACRIDICON-CHUVA field 

experiments (Martin et al., 2016; Wendisch et al.,2016; Martin et al., 2017; Machado et al., 2018). 

Although the area constitutes an intriguing location with both a high amount of rain and complex 

aerosol-cloud interaction (e.g., Cecchini et al., 2017; Machado et al., 2018), there are almost no 140 

references for hydrometeor classification over tropical land, especially for the Amazon region. In this 

regard, the studies by Dolan et al. (2013) and Cazenave et al. (2016) took place in singular locations 

(Darwin, Australia, and Niamey, Niger, respectively). Both of these studies used a supervised fuzzy 

logic approach to retrieve the hydrometeor distribution within precipitation events with a C- and 

adapted X-band scheme, respectively. As aforementioned, fuzzy logic algorithms use weights to 145 

constrain the final identification. Another issue that might be related to hydrometeor identification tasks 

is the use of the melting layer as a parameter to detect liquid-ice delineation. However, liquid water 

above the melting layer within the convective tower of tropical systems is not unusual (Cecchini et al., 
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2017; Jakel et al., 2017). For instance, Cecchini et al. (2017) retrieved liquid water at as low as -18 °C 

within polluted tropical convective clouds. Classification using cluster analysis allows the use of natural 150 

(non-imposed) classes of ice-water species. For all these reasons, the present paper deals with the first 

unsupervised clustering method based on X-band DPOL radar measurements in the Brazilian tropical 

region. Three main questions are addressed in this paper: (1) What is the sensitivity of the clustering 

algorithm to the different linkage methods, and how can one improve the liquid-solid delineation? (2) 

What are the hydrometeor classification output characteristics for both wet and dry tropical seasons in 155 

Amazonas? And (3) what are the microphysical distribution differences within tropical convective and 

stratiform cloud systems between the wet and dry seasons? 

 The article is organized as follows: section 2 provides a brief description of the radar dataset, 

while section 3 presents the AHC method. The sensitivity of the AHC to the linkage methods together 

with a potential temperature improvement is assessed and discussed in section 4. The hydrometeor 160 

identification for Brazilian tropical system events is presented in terms of wet-dry seasons and 

stratiform-convective regions in section 5, while a discussion of hydrometeor distribution comparisons 

is presented in section 6. 

 

2. Datasets and processing 165 

 The data used in this study are mainly based on DPOL radar data observations collected during 

both the GoAmazon2014/5 and ACRIDICON-CHUVA experiments that took place around the city of 

Manaus in the Amazonas state of Brazil (Figure 2). Both of these research experiments aimed to 

investigate the complex mechanisms at play within tropical weather through intriguing interactions 
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between human activities and the neighbouring tropical forested region. In this regard, the present study 170 

considers the wet and dry seasons as corresponding to the intensive operating periods (IOPs) of the 

GoAmazon2014/5 field experiment (Martins et al., 2016), which were from 1 Feb – 31 Mar 2014 (wet 

season: 59 days) and 15 Aug – 12 Oct 2014 (dry season: 60 days). 

 Among all the instruments deployed, a Selex-Gematronik X-band DPOL radar was located in the 

city of Manacapuru in 2014 to complete the radar coverage from the Manaus Doppler radar, as well as 175 

to provide more microphysical details about the South American monsoon meteorological systems 

(Oliveira et al., 2016). The X-band DPOL radar was operated at 9.345 GHz with a 1.3° beam width at -

3 dB and in simultaneous transmission and reception (STAR) mode (Schneebeli et al., 2012; and Table 

1). The latter characteristic allows the reflectivity at horizontal polarization ZH, differential reflectivity 

ZDR, differential phase ΦDP, and correlation coefficient ρHV to be obtained. The scanning strategy was 180 

designed to complete an entire volume scan in 10 minutes by combining 15 different plan position 

indicators (PPIs) ranging from 0.5° to 30°, as well as two range height indicators (RHIs) towards 

randomly different directions.  

 The raw radar dataset has been processed beforehand to be used for the hydrometeor identification 

task. In this regard, a four-step process has been applied to the DPOL radar dataset which consists of i) 185 

calibration of ZDR, ii) identification of meteorological and non-meteorological echoes, iii) ΦDP filtering 

and estimation of the derivative specific differential phase KDP (Hubbert and Bringi, 1995), and iv) 

attenuation correction applied to both ZH and ZDR based on the ZPHI method proposed by Testud et al. 

(2000). The calibration of ZDR has been adjusted by using vertically pointing scans for cases with no rain 

attenuation (drizzle/light rain). This method allows to temporally calculate the ZDR offset since 0 dB is 190 
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expected. The offset has been then removed in subsequent ZDR measurements. A second analysis of ZDR 

was occasionally realized by checking ZDR values within stratiform light rain medium and characterized 

by ZH values between 20 and 22 dBZ. The expected ZDR value was 0.2 dB as showed by Illingworth and 

Blackman 2002 or Segond et al. 2007. Note that the dataset has also been restricted to precipitation 

events wherein the radome of the X-band DPOL radar was dry in order to remove any additional 195 

attenuation (Bechini et al, 2010). In addition to these considerations, a signal-to-noise ratio of SNR ≥ 

+10 dB, as well as a reduced radar coverage ranging from 5 to 60 km have been considered for this 

study to mitigate potential remaining errors. The last processing step relies on the separation of 

stratiform and convective radar echoes. The methodology used in the present paper is the same as that 

used by Steiner et al. (1995) and has been applied from a horizontal reflectivity field at a constant 200 

altitude plan position indicator (CAPPI) generated at 3 km height (T > 0 °C). 

 The present study also deals with external temperature information coming from soundings 

launched near the X-band radar (downwind of Manaus) at 00, 06, 12, 15, and 18 UTC, respectively. The 

sounding with the closest time to the radar measurements has been considered to derive the temperature 

profile associated with both PPIs and RHIs. 205 

 

3. Unsupervised Agglomerative Hierarchical Clustering 

 The present hydrometeor classification algorithm is an unsupervised AHC method that aims to 

partition a set of n observations into N different clusters. This technique works as an iterative “bottom-

up” method where each observation starts in its own cluster and pairs of clusters are aggregated step by 210 

step until there is one final cluster, which comprises the entire dataset. Each cluster is composed of a 
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group of observations sharing more similar characteristics than the observations belonging to the other 

clusters. Here, there is no a priori information concerning the shape and size of each cluster or the final 

optimized number of clusters. A posteriori analysis is then performed through the final iterations to 

retrieve the optimal clustering partition and respective labels.  215 

 Since associated background already exists, the reader is especially referred to Ward (1963) and 

Jain et al. (2000) for detailed mathematical reviews of the technique. Additionally, the present 

clustering framework is mainly based on the methodology developed by Grazioli et al. (2015 – section 4 

and Figure 2), hereafter referred to as GR15, and only relevant and important information will be 

addressed hereafter to avoid being redundant. The main steps of the present AHC can be summarized as 220 

follows: 

 Vectorized objects of radar observations are defined for each valid radar resolution volume as 

    x = {ZH, ZDR, KDP, ρHV, Δz}, 

 where Δz is the difference between the radar resolution height and the altitude of the isotherm at 

0 °C, deduced from sounding balloons. 225 

 Since scales of radar polarimetric variables differ by orders of magnitude, data normalization is 

applied to concatenate all the observations into a [0;1] common space. The first four components 

of each object are based on the minimum-maximum boundaries rule. The temperature 

information is redistributed by applying a soft sigmoid transformation that allows setting a value 

of zero (one) for altitudes below (over) the bright band. Here, the thickness of the bright band 230 

over the whole GoAmazon2014/5 – ACRIDICON-CHUVA database has been manually 

estimated and set up to spread over a layer of ± 700 m. To obtain the maximum degrees of 
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freedom in the initial dataset coming from the DPOL radar measurements, here, the influence of 

the temperature information is mitigated by distributing its values into a [0;0.5] range space. 

 Although the radar data are now suitable for clustering, the choice of two criteria still remains. 235 

At each iteration of the AHC method, similarities/dissimilarities must be evaluated to determine 

which clusters merge. In this regard, the Euclidean metric is considered to calculate the distance 

between different single objects. The generalization of this distance metric to an ensemble of 

objects is called the merging linkage rule. Various methods exist to evaluate inter-dissimilarities 

such as single (nearest neighbour), complete (farthest neighbour), averaged, weighted, centroid, 240 

or even Ward (variance minimization) linkages (see Müllner, 2011). Herein, we consider the 

weighted, centroid and Ward linkage rules (see section 4.a).  

 Running such a clustering method over the whole dataset is computationally very expensive. To 

tackle this problem, a subset of approximately 25 000 initial observations is randomly chosen 

through the whole precipitation events database. The clustering method is initially applied to the 245 

subset and then extended to the whole dataset by using the nearest cluster rule at each iteration. 

 One of the major novelties proposed by GR15 relies on the implementation of a spatial 

constraint that aims to check the homogeneity of the clustering distribution at each iteration. 

More precisely, one assumes that a smooth, horizontal transition exists between the resulting 

hydrometeor field outputs. Therefore, a spatial smoothness index is calculated at the end of each 250 

iteration step and individual object by checking the four closest geographical radar gates. In the 

very same way as that used in GR15, results are summarized into a confusion matrix, from 
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which several spatial indexes can be extracted to analyse the individual and global spatial 

smoothness of a partition.  

 The merging of two clusters is realized by identifying the cluster which presents the lowest 255 

spatial similarities among all clusters. Objects belonging to this spatially poor cluster are then 

constrained to be redistributed through the other existing clusters according to the linkage 

method chosen. This final step allows decreasing the total number of clusters by one.  

 If the iteration process does not reach a single and unique cluster, the iteration loop then restarts 

at the initial PPIs classification and goes through the evaluation of spatial homogeneity. 260 

 Finally, an analysis of the variance explained has been implemented to evaluate the consistency 

of the clustering classification outputs. This quality metric allows definition of the theoretically 

appropriate number of clusters by analysing the ratio between the internal and external variance 

of each cluster at each step of the iteration. The main idea here is to find the optimal cluster 

distribution beyond which considering one more cluster is not meaningful. 265 

 

4. Methodology discussions  

 a) Linkage rule sensitivity  

 According to the setup described in section 3, different linkage rules have been tested through the 

special wet season observation period (February to March) of 2014. To perform this sensitivity test, 270 

three different linkage rules have been considered here: (i) weighted, (ii) centroid, and (iii) Ward (see 

Table 2 for their respective formulas). Since the clustering method randomly picks observations within 

the whole wet season period, a set of numerous runs for each linkage method have been performed to 
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extract, as much as possible, the most representative behaviour of each one. The general common setup 

is composed of a subset of 25 000 observations randomly picked through more than 50 precipitation 275 

days. The temperature information is based on radiosounding observations and is dispatched in a [0;0.5] 

interval to place twice as much importance on the initial DPOL radar observations. The number of 

clusters reached in the first step of the AHC method is set at 50 (far enough from the final partition and 

not too computationally expensive). Finally, the clustering method has been conducted separately on 

stratiform and convective regions. 280 

 

 In this respect, Figure 3 presents the evolution of the variance explained (the ratio between the 

internal and external variance) for the three different linkage rules as a function of the number of 

clusters considered, together with their associated precipitation regimes (stratiform or convective). 

Overall, the three methods exhibit an “elbow” curvature with an optimal number of clusters ranging 285 

from approximately 5 to 8 (orange background on Figure 3). One can see that from 2 to 5 clusters, the 

variances explained sharply increases, meaning that each added cluster within this interval contributes 

significantly to retrieving the most adequate cluster partition. From 5 to 8 clusters, the increase starts to 

slow down, indicating that considering a greater number of clusters is not meaningful. In this regard, the 

best “compromise” seems to be the weighted and/or Ward linkage method for both stratiform and 290 

convective regions. Indeed, these methods have the highest scores, with approximately 99 % reached 

within the 5-8 clusters interval.  
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 Due to the inherent complexity of representing all the potential combinations, manual analysis and 

selection have been performed beforehand to find the optimal number of clusters between the stratiform 295 

and convective regions. The results from this partitioning are presented through one stratiform and one 

convective RHI (Figures 4 and 5).  

 

In addition, fuzzy logic information has been implemented to make comparisons with cluster outputs. 

The fuzzy logic scheme is mainly based on the X-band algorithm of Dolan and Rutledge (2009), 300 

hereafter referred to as DR09, and has been slightly enriched for the wet snow and melting hail 

hydrometeor types by Besic et al (2016) through scattering simulations and a temperature membership 

function (Besic et al, 2016 – Appendix A). Finally, the adapted fuzzy logic allows discrimination 

between nine hydrometeor types: light rain (LR), rain (RN), melting hail (MH), wet snow (WS), 

aggregates (AG), low-density graupel (LDG), high-density graupel (HDG), vertically aligned ice (VI), 305 

and ice crystals (IC). 

 

Figure 4 shows a stratiform system exhibiting a well-defined bright band signature from polarimetric 

observations that occurred on the shores of the Amazon River on 21 February 2014. Overall, the 

centroid linkage method does not reproduce the event well, and the final representation is 310 

microphysically poor (Figure 4-f). Indeed, this linkage rule simply divides the cloud into three 

homogeneous regions (T > 0 °C, T ~ 0 °C, and T < 0 °C). Additionally, the centroid linkage fails to 

identify a clear bright band region (Figure 4f, clusters 2S and 3S). On the other hand, the weighted and 

Ward linkage methods are very close to the fuzzy logic output descriptions (Figure 4e-g-h). They both 
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exhibit two kinds of rain, and a bright band region sits below of what appears to be an aggregates-ice 315 

crystals mixture. The main discrepancy here concerns the representation of the rain structure. The Ward 

linkage rule retrieves two more distinct liquid species (as does fuzzy logic), whereas the weighted 

linkage method exhibits a smoother rainy region. 

 

Figure 5 presents a decaying convective cell that occurred on 02 February 2014 at 13:57 UTC (0-7 km 320 

from the radar: stratiform region, 7-40 km from the radar: convective region). As is the case for the 

stratiform RHI in Figure 4, the centroid linkage rule fails to retrieve a detailed microphysical structure 

and only presents very homogeneous liquid and solid regions. Once again, both the weighted and the 

Ward linkage rule stand out and display a more realistic hydrometeor description of the convective 

cloud in comparison to the DPOL radar observations and the fuzzy logic outputs (Figure 5 a-b-c-d-e-g-325 

h). Although they both present three clusters for T > 0 °C, the weighted linkage rule puts more emphasis 

on the convective region located ~ 20-30 km from the radar than does the Ward linkage (Figure 5-e, 

cluster 6C vs. Figure 5-g, cluster 11C). The representation of the solid region (T < 0 °C) is almost the 

same, except for in the aggregates region (Figure 5h), which seems to be smaller for the weighted 

linkage rule (Figure 5e cluster 8C) than for the Ward method (Figure 5g cluster 10C). Another 330 

discrepancy between the weighted and Ward linkages concerns the layer around the isotherm at 0 ºC. 

Although Figure 5 does not exhibit any bright band region, the Ward linkage rule does exhibit one due 

to the temperature input (Figure 5g cluster 12C), whereas the weighted rule does not. The bright band 

region is known to be well-defined for stratiform regimes but quasi-undetectable (if detectable at all) for 

convective areas (Leary and Houze, 1978; Smyth and Illingworth, 1998; Matrosov et al., 2007). 335 
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Throughout the present paper, one will thus consider only a bright band cluster for the stratiform 

regions, whereas convective areas will be lacking one. 

 

Overall, Figures 3, 4, and 5 have shown that the centroid linkage method is inappropriate for the present 

task, whereas both weighted and Ward linkage rules are able to retrieve a detailed microphysical 340 

structure within the sample cloud. Based on the present description and our personal analysis over the 

whole dataset, we chose to keep working with the weighted linkage rule throughout the remainder of the 

paper.  

 

 b) Potential improvement around isotherm 0 °C 345 

High amounts of liquid water a few kilometres above the isotherm at 0 °C are not rare within the core of 

convective tropical cells. Sometimes, super-cooled liquid drops can be maintained and even moved 

upward within the melting layer, thus occasionally giving distinctive column-shaped polarimetric 

signatures for ZDR/KDP (e.g., Kumjian and Ryzhkov, 2008). A simple liquid-solid delineation based only 

on the temperature profile is therefore unsuitable.  350 

Figure 6 presents an adaptive solution to tackle this issue based on the clustering outputs of the 

weighted linkage rule. The solution proposed here relies on a posteriori analysis of the clustering 

outputs associated with the convective regions. First, one proceeds to identify the convective core under 

the isotherm at 0ºC (here, cluster 6C). Then, all radar observations within the solid region are assigned 

by calculating their distance from the 6C cluster centroid without applying any temperature constraint 355 

(objects are thus defined only by the first four radar components). If the distance is smaller than D<0.25 
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and there is no discontinuity throughout the liquid-solid delineation, then the solid identification is 

switched to liquid (cluster 6C). Note that the distance D has been empirically chosen for the present 

radar observations and could consequently be adjusted by exploring more convective days. Overall, 

with this simple hypothesis, one can see the potential of a such method (Figure 6b). The liquid cluster 360 

can thus reach 8 km in the core of the convection at 25 km from the radar, which matches well with the 

convective tower (>35 dBZ) visible in Figure 5a. Around this convective core, the enhancement allows 

raising raindrops by about one kilometre upward in the 0ºC isotherm, restraining cluster 6C at ~ 5 km. 

In comparison to a simple binary delineation such as that used for the fuzzy logic outputs (Figure 6a), 

the focus on radar observables in a second phase is then promising.  365 

 

 

5. Wet and dry season dominant hydrometeor classifications 

 This section aims to interpret and label each cluster retrieved through both the wet and dry seasons 

over the Manaus region by using the AHC method setup described in section 3. As the use of 370 

classification allowing liquid water above the melting layer of convective towers needs further 

validation, a standard classification is used to classify and analyse the wet and dry hydrometeors using 

the temperature parameter. 

 

 a) Wet season clustering outputs 375 

 The distributions of ZH, ZDR, KDP, ρHV, and Δz for each cluster from the stratiform and convective 

clouds of the wet season together with their probability densities are presented in the violin plot in 
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Figure 7 and Figure 8, respectively. The contingency table between the stratiform (convective) 

clustering outputs and the nine microphysical species retrieved by the DR09 adapted fuzzy logic 

algorithm is shown in Table 3 (Table 4). The complete wet season cluster centroids are given in 380 

Appendix A.1. 

 

 

  1) Stratiform region 

 Cluster 1S is only defined for negative temperatures and is associated with high ρHV and low ZH, 385 

ZDR and KDP values (Figures 4e and 7). One can see from contingency Table 3 that the cluster 1S 

repartition is mostly associated with aggregates (~ 33 %) and ice crystals (~ 12 %) for high altitudes. 

Although the horizontal and differential reflectivity values are slightly higher than those for the DR09 

T-matrix microphysical outputs and polarimetric characteristics retrieved by GR15, one can make the 

assumption that the cluster 1S behaviour stands for ice crystals. On the other hand, cluster 2S is closer 390 

to the DR09 T-matrix aggregates microphysical features. This cluster is characterized by a mean 

horizontal (differential) reflectivity of ~ 27 dBZ (~ 1.3 dB), a low specific differential phase (~ 0.27 

degree/km) and a high coefficient of correlation (0.97). Overall, the polarimetric signatures of cluster 2S 

are mostly divided into the associated wet and dry snow (aggregates) from the microphysical categories 

of fuzzy logic (Table 3). Figure 4e allows discrimination between these categories, and one can consider 395 

that cluster 2S is here associated with aggregates. Once again, its polarimetric signatures are slightly 

higher than the DR09 T-matrix values or even the GR15 aggregates clustering output. One explication 

behind these distributions being slightly shifted to higher values can be the relative humidity, which is 
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higher in the tropics than at higher latitudes. The growth of ice crystals/aggregates by vapor diffusion 

within this cloud region (Houze, 1997) may lead to bigger solid particles (higher ZH and ZDR values).  400 

The bright band region is well-represented here by cluster 4S. Indeed, its global distribution spreads 

only at the altitude of the isotherm at 0 °C and exhibits high ZH and ZDR values, as well as low KDP and 

ρHV values. Finally, clusters 3S and 5S present rain characteristics since more than 90 % of these 

clusters are in agreement with the drizzle and rain fuzzy logic types from DR09. Although the two 

clusters have the same behaviours, cluster 3S is characterized by polarimetric signatures higher than 405 

those in cluster 5S, except for the coefficient of correlation (0.97 vs. 0.99, respectively). In this regard, 

one can consider that cluster 3S represents the rain microphysical species, whereas cluster 5S is related 

to drizzle characteristics.  

 

 2) Convective region 410 

Overall, one can see from Figures 5 and 8 that the convective regions of the wet season are composed of 

three types of hydrometeors for both positive (clusters 6C-10C-11C) and negative temperatures 

(clusters 7C, 8C and 9C).  

Hail precipitation in the Amazonas region is rare, and as expected, no clusters represent melting hail 

characteristics, as in Ryzhkov et al. (2013) or Besic et al. (2016) (Table 4). Therefore, clusters 6C, 10C, 415 

and 11C can be associated with three distinct rainfall precipitation regimes. In this regard, cluster 10C 

presents the same light rain characteristics as both DR09 and GR15. The cluster is characterized by ZH 

(ZDR) values approximately 13 dBZ (0.68 dB), and a KDP (0.14 degree/km) that is in high agreement 
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with the drizzle hydrometeor type from the adapted fuzzy logic (~ 97 %, Table 4). According to this 

description, one can attribute cluster 11C to the light rain precipitation type. The two remaining liquid 420 

clusters are associated with moderate and heavy rainfall types with almost the same polarimetric 

signatures as those given in GR15. Indeed, cluster 6C presents higher ZH (44 vs. 31 dBZ), ZDR (2.1 vs 

1.4 dB), and KDP (1.9 vs 0.8 degree/km) mean values than those for cluster 11C. In this regard, one can 

link cluster 6C to heavy rainfall and cluster 11C to moderate rainfall.   

Concerning negative temperatures, cluster 9C stands out by being spread at the highest altitudes (Figure 425 

8-e). This cluster is defined by low ZH, ZDR, and KDP values together with a moderate ρHV (~ 0.97). One 

can note that cluster 9C is close to the ice crystals/small aggregates retrieved by GR15 and is also the 

only cluster related to the T-matrix ice crystals species from DR09 (Table 4). Within the decaying 

convective cell presented in Figure 5, one can observe that cluster 7C is associated with the low-density 

graupel characteristics proposed by DR09 and exhibits ZH (ZDR) values approximately 36 dBZ (0.8 dB). 430 

In addition, cluster 7C is mainly classified (~ 69 %) as low-density graupel (Table 4). Finally, the last 

cluster, 8C, is surrounded by ice crystals and presents polarimetric signatures lower than those for 

cluster 7C. Although it is defined by higher values than those given by DR09 and GR15, one can 

associate cluster 8C with the aggregate microphysical species. Indeed, contingency Table 4 shows that 

45 % of the cluster 8C points are in agreement with this hydrometeor type.  435 
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 b) Dry season clustering outputs 440 

As for the previous section, the clustering outputs retrieved by the AHC method and the weighted 

linkage rule are identified and associated with their corresponding microphysical species through the 

dry tropical season. The corresponding cluster centroids are detailed in Appendix A.2. 

 

1) Stratiform region 445 

Figure 9 shows the clustering classification outputs extracted from an RHI presenting a melting layer 

region within a stratiform event that occurred on 08 September 2014 in the region of Manaus. Overall, 

the clustering outputs are close to the hydrometeor distribution retrieved by the adapted DR09 fuzzy 

logic. Clusters 1S-2S retrieved for positive temperatures appear well located in terms of polarimetric 

signatures and fuzzy logic outputs. One can see that the melting layer region is clearly characterized by 450 

cluster 4S, whereas for negative temperatures, clusters 3S-5S show patterns close to the fuzzy logic 

outputs.  

The violin plots in Figure 10 and contingency Table 5 allow discrimination and labelling of these 

clusters. For DR09 classification, clusters 1S and 2S exhibit rainfall signatures. Cluster 2S is in 

agreement with the fuzzy logic drizzle category (~ 92 %), whereas cluster 1S is divided into the drizzle 455 

(~ 76 %) and rain (~ 22 %) microphysical species. Between these two clusters, one can observe that 

cluster 1S contains the highest ZH, ZDR and KDP values, and one can consequently label it as a rainfall 

type. Cluster 2S is, however, associated with the drizzle/light rain category according to the polarimetric 

radar signatures (GR15).  
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The liquid-solid delineation is represented here by cluster 4S. It presents a low ρHV (~ 0.93) and a large 460 

ZH distribution around ~ 30 dBZ and is almost only defined for altitudes close to the 0ºC isotherm. In 

addition, contingency Table 5 matches well with this hydrometeor association.  

For the negative temperatures, the clustering outputs exhibit two clusters, 3S-5S. The first is located 

within the edge region of the cloud, whereas cluster 5S is distributed at lower altitudes and is closer to 

particles of greater densities (Figure 10). Cluster 5S is in ~ 70 % agreement with the aggregate fuzzy 465 

logic outputs (Table 5), and its polarimetric signatures are close to those of GR15 and T-matrix 

simulations from DR09. One can then define cluster 5S as the aggregate microphysical species. Finally, 

ice crystals/small aggregates are represented through cluster 3S, which is defined by low ZH, ZDR, and 

KDP values and a high ρHV.  

 470 

 2) Convective region 

Figure 11 shows an RHI of a convective system that occurred in the late afternoon on 06 October 2014 

in the region of Manaus. Overall, this RHI shows a convective cell (at 24-50 km from the radar) 

together with its relative stratiform region (0-23 km). Note that the abrupt transition from the convective 

and stratiform classification areas (Figure 5-6-11) is inherent to the Steiner et al. (1995) algorithm. In 475 

terms of microphysical distribution, there should be some consistency between the two cloud types. The 

implementation of continuity analysis may prevent the latter artefacts. The convective cell is 

characterized by ZH values up to 25 dBZ at 14 km, and the cloud top exceeds 16 km. According to the 

fuzzy logic outputs (Figure 11-f), the cell exhibits mostly rainfall precipitation for positive 

temperatures. The corresponding cluster outputs retrieve the same signatures, dividing the rain pattern 480 
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into three different clusters: 6C, 7C, and 12C. Once again, the fuzzy logic collocates a bright band 

around the isotherm at 0ºC, whereas neither polarimetric signatures nor clustering outputs exhibit a 

bright band. For negative temperatures, the AHC method retrieves four clusters (8C, 9C, 10C and 11C), 

the same as the fuzzy logic outputs. 

 485 

The violin plots in Figure 12 and contingency Table 6 allow discrimination and labelling of these 

clusters. For the convective regions observed during the wet season, hail precipitation is rare in the 

Amazonas. Contingency Table 6 is also in agreement with this description, since none of the clustering 

outputs exceed 3 %. Therefore, one can attribute clusters 6C, 7C, and 12C to three different rainfall 

precipitation regimes, ranking the cluster positions as follows: 12C presents weaker ZH, ZDR, and KDP 490 

values than does cluster 7C, which presents lower values than does cluster 6C (Figure 12). In addition, 

one can see from contingency Table 6 that all three are in very high agreement with the drizzle and rain 

microphysical species. Based on the aforementioned description together with Figure 11 analysis, one 

can attribute cluster 12C to light rainfall, cluster 7C to moderate rainfall and, finally, cluster 6C to the 

heavy rainfall type.  495 

Concerning all clusters spreading at negative temperatures, cluster 11C matches well with the high-

density graupel category defined by DR09 such as “graupel growing in regions of large supercooled 

water contents, melting graupel, and freezing of supercooled rain”. Based on contingency Table 6, this 

cluster is mainly associated with wet snow and slightly with the low-density graupel microphysical 

specie. Nevertheless, one can see that the ρHV distribution is pretty low (~ 0.94) and could also be the 500 

signature of wet graupel (due to melting or wet growth) or a mixture of graupel and hail, as suggested 
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by Straka et al (2000) and Kumjian et al (2008). This cloud region is surrounded by low-density 

graupel, characterized by cluster 9C (Figures 11-12). This hydrometeor type shows 60 % agreement 

with this microphysical type within contingency Table 6 and is close to the DR09 T-matrix outputs. 

Cluster 10C shares more than 50 % with the aggregates type and 30 % with the low-density graupel 505 

type, whereas cluster 8C is associated in general with ice crystals and aggregates types (Table 6). With 

Figures 11-12 and the aforementioned description, one can analyse cluster 9C as low-density graupel, 

cluster 10C as aggregates, and, finally, cluster 8C as ice crystals.  

 

6) Discussion 510 

 a) Impact of the clustering method and location 

 The present results allow making a brief comparison between the classical supervised fuzzy logic 

technique commonly used in the literature and the unsupervised AHC method. In opposition to the rigid 

structure of a fuzzy logic algorithm, the flexibility of the clustering approach allows better identification 

of the bright band region. Indeed, the liquid-solid delineation around the 0 °C isotherm is better 515 

captured and distinguished by the AHC method, which preferentially follows the polarimetric signatures 

instead of the stratified temperature region. Additionally, one can see the ability of the AHC method to 

fully exploit the high sensitivity of the X-band radar frequency to distinguish between three different 

(light, moderate, and heavy) rainfall regimes such as in GR15. This enhancement allows, for instance, 

putting more emphasis onto severe convective precipitation cells and may open new perspectives for 520 

nowcasting issues. 
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Note that the present clustering method has been distinctly subdivided into stratiform and convective 

regions. Although they are characterized by different thermodynamic structures (Houze, 1997), the 

stratiform and convective regions may be related in terms of microphysical distributions, such as ice 

particles which might be ejected from the top of an active convective cell into the upper part of the 525 

stratiform region. This microphysical continuity could be further considered either by merging 

stratiform and convective hydrometeor types that present close DPOL characteristics (Figures 7-8-10-

12), or by implementing an a posteriori continuity analysis. 

The location of the present study also offers the possibility to discuss mid-latitude and tropical 

microphysical differences. As described in section 5, the dominant tropical hydrometeor classification 530 

overlaps some mid-latitude microphysical species definitions. For instance, one can see that both the 

aggregate and ice crystal microphysical species are skewed to higher horizontal (differential) reflectivity, 

regardless of the season and region (stratiform/convective) considered. These discrepancies might be 

attributed either to an inaccurate attenuation correction or inherent tropical characteristics involved 

within microphysical ice growth. Although we considered a limited radar coverage, regions with high 535 

SNR values, as well as only precipitation events having a dry radome, the ZPHI method may still lead 

to overcorrection, especially on ZDR in strong convective cases when the Mie-scattering may dominate 

the precipitation regions. Another explanation of these discrepancies may rely on tropical atmospheric 

characteristics that present higher tropospheric humidity profiles together with higher incident solar 

radiation, playing an important role in comparison to mid-latitudes.  540 
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 b) Wet-Dry season differences 

The investigation of some Amazonian wet-dry season differences has already been explored by a few 

studies. For instance, Machado et al. (2018) noted that during both the GoAmazon2014/5 and 545 

ACRIDICON-CHUVA field campaigns, the wet season overall mean cumulative rain was four times as 

much as that during the dry season. However, though characterized by a low amount of total rainfall, 

the dry season presents the higher rainfall rate (Dolan et al, 2013; Machado et al, 2018). According to 

Machado et al (2018), these discrepancies can partly be explained by the fact that the dry season 

presents higher convective available potential energy (CAPE) and lower cloud cover than those during 550 

the wet season. Another study conducted by Giangrande et al (2017) also examined the wet-dry season 

differences through convective clouds. The authors showed that warm clouds exhibit larger cloud 

droplets and that the stratiform region during the wet season is much more developed than that during 

the dry season (due to surrounding monsoon ambient characteristics).  

All these differences are expected to contribute to the wet-dry season differences. Here, one can address 555 

for the first time these discrepancies through the dominant microphysical patterns in terms of 

stratiform/convection precipitation regimes associated with the Central Amazonas (Manaus region). 

Based on this new hydrometeor classification adapted to the tropical region, this section explores the 

differences among the clouds related to these two seasons.  

 560 

  1) Stratiform region 

Figure 13 presents a comparison of pairs of stratiform hydrometeor types between the wet and dry 

seasons. For positive temperatures, both the drizzle and rain microphysical species present higher ZH 
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and lower ZDR values during the dry season than during the wet season. These polarimetric signatures 

might be attributed to the evaporation and collisional processes that tend to reduce the particle diameters 565 

(Kumjian and Ryzhkov 2010; Penide et al, 2013). The separation between the drizzle/light rain and the 

rain microphysical species is defined for a rainfall rate of approximately 2.5 mm/h (American 

Meteorological Society, 2018). The classical Marshall-Palmer Z-R relationship allows estimation of the 

rainfall rate for stratiform precipitation. In this regard, the wet rain microphysical species is 

characterized, on average, by a rainfall rate of 1.84 mm/h, whereas the rate is up to 3 mm/h during the 570 

dry season. The general wet rain microphysical species distribution thus still contains drizzle/light rain 

observations, which might be due to the different cloud cover patterns associated with stratiform echoes 

during the two seasons. As noted by Machado et al (2018), stratiform cloud cover related to the rainy 

season is more associated with a monsoon cloud regime than during the remaining season. While the 

dry season stratiform regime is directly the result of the rain convective cells, the wet stratiform cover 575 

may also refer to large ambient unrelated residual precipitation far outside the original convective cloud. 

Overall, the melting layer, which is represented here through the wet snow microphysical species, is 

consistent with the results of previous studies (Durden et al, 1997; Giangrande et al, 2008; Heymsfield 

et al, 2015; Wolfensberger et al, 2015; Wang et al, 2018). The vertically restricted layer of wet snow 

presents the most widespread distribution of ZH, ZDR, KDP and ρHV of all the retrieved microphysical 580 

species and for both seasons. One can see that the wet season distribution differs from the dry season, as 

its distribution is more associated with lower (higher) ZH (ZDR) values. The main discrepancy here is 

related to the ZDR distribution, which has stronger values during the wet season by approximately 1 dB. 

According to the study of Wang et al. (2018) which put emphasis onto mature Mesoscale Convective 
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System events during the GoAmazon2014/5 experiment, the wet season always presents stronger bright 585 

band signatures that might be attributed to more prominent aggregation processes. Indeed, the moist 

conditions in midlevels could promote more ice growth in the stratiform regions (as compared to the dry 

season) and could lead to stronger bright band signatures when those aggregates melt. 

One of the main differences in the cloud structure between the wet and dry season relies on the cloud 

top altitudes. Indeed, during the dry season, clouds can easily reach 16-17 km in the tropics compared to 590 

only 13-14 km during the wet season. Therefore, the microphysical processes for negative temperatures 

are distributed over two different thickness layers and moisture profiles. In this cloud region, ice 

crystals grow by vapor diffusion until to have a sufficient weight to start falling and forming aggregates 

(Houze, 1997). Although they present quite similar distributions, they both spread at about a 1.5 km 

interval difference in altitude. Additionally, the ZDR values associated with aggregates and ice crystals 595 

are generally slightly higher than those retrieved in DR09 or GR15. However, this result is consistent 

with the study of Wendisch et al (2016) that identified shaped plates of aggregates/crystals in the anvil 

outflow with in situ airplane observations. 

 

  2) Convective region 600 

Figure 14 presents a comparison of pairs of convective microphysical species between the wet and dry 

seasons. As aforementioned in section 5, the dry season is composed of 7 hydrometeor types compared 

to 6 for the wet season. While the rainy season only has a graupel microphysical species, the dry season 

allows distinguishing between low- and high-density graupel. Therefore, the graupel microphysical 
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species defined during the wet season has been associated with the low-density graupel of the dry 605 

season to make this comparison possible.  

Convective regions are characterized by three different rainfall regimes: light, moderate and heavy rain. 

Overall, the ZH, ZDR, and KDP distributions associated with the dry season are generally shifted towards 

higher values. The dry season is known to exhibit the most intense convective cells (Machado et al, 

2018). Their corresponding precipitation formation mechanism is generally dominated by ice 610 

microphysical processes, wherein the melting of graupel particles lead to large raindrops (Rosenfeld and 

Ulbrich, 2003; Dolan et al., 2013). One can see here that although growth by coalescence could be very 

efficient during the wet season, the production of larger raindrops results mostly from ice microphysical 

processes.  

Overall, the combination of the wet season graupel microphysical species with the dry season low-615 

density graupel makes sense in Figure 14. Indeed, they have almost the same polarimetric range 

distributions and are in agreement with each other. By contrast, the high-density graupel signatures are 

correlated with high ZH, ZDR, and KDP values and low ρHV values. As mentioned in section 5.b.2, high-

density graupel would have been associated with a mixture of wet graupel/small hail. Nevertheless, 

these three related graupel categories are even consistent with the DR09 T-matrix definitions. 620 

The main discrepancy between the aggregate and ice crystal microphysical species concerns their 

altitude definitions, wherein the dry season allows generating these hydrometeor types at higher 

altitudes. Systematically, the aggregate and ice crystal ZH and ZDR distributions are shifted to higher 

values during the wet season. These shifts may be due to an unreliable estimation of the attenuation 

correction or explained by the results of Rosenfeld et al (1998) and Giangrande et al (2016). Both of 625 
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these studies showed that during the dry season, updrafts are more intense and, therefore, do not allow 

enough time for small ice crystals to properly develop. In terms of aerosol concentrations, the wet 

Amazonian season is known to be much cleaner than the dry season (Artaxo et al. 2002). With this 

regard, Williams et al (2002), Cecchini et al (2016), or even Braga et al (2017) highlighted its impact on 

the microphysical development of tropical cloud particles, showing that high aerosol concentrations 630 

may lead to smaller liquid particles within strong updraft regions. Well, small drops are known to freeze 

at colder temperatures by inhibiting the ice multiplication processes (Hallet and Mossop, 1974), and 

may account for the wet/dry season differences observed.  

 

 635 

7. Conclusions 

Based on an innovative clustering approach, the first hydrometeor classification for Amazon tropical-

equatorial precipitation systems has been realized by using research X-band DPOL radar deployed 

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The AHC method 

was broadly equivalent to GR15 and built using ZH, ZDR, KDP and pHV polarimetric radar variables 640 

together with temperature information extracted from sounding balloons. The clustering approach 

allowed gathering of polarimetric radar observations that exhibit similarities amongst themselves within 

both wet and dry seasons and both stratiform and convective regions. Sensitivity analysis during the wet 

season was performed through different linkage rules and showed that both the weighted and Ward 

linkage rules were the most suitable for this hydrometeor classification task. In this regard, a novel 645 

approach was tested to improve the 0 °C hydrometeor layer representation within the convective region. 
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While the 0 °C isotherm region is generally binarily represented, one can allow the liquid water content 

to overpass this region by setting simple rules. The final representation showed a realistic distribution 

and created new perspectives to respect polarimetric radar signatures as much as possible.  

The AHC clustering outputs for both the wet and dry seasons and the stratiform and convective regions 650 

were investigated over the Manaus region with the complete datasets collected during 2014. Although 

previous studies were conducted for different latitudes and/or wavelengths, the retrieved hydrometeor 

types were found to be generally in agreement. Overall, typical cloud microphysical distributions within 

the stratiform precipitation regimes are characterized by five hydrometeors: drizzle/light rain, rain, wet 

snow, aggregates, and ice crystals. On the other hand, convective regions exhibit more diversified 655 

microphysical populations with six (seven) retrieved hydrometeor types for the wet (dry) season: light 

rain, moderate rain, heavy rain, low-density graupel, (high-density graupel), aggregates, and ice 

crystals. 

The present study also highlighted the potential of the clustering approach in comparison to a more 

“classical” supervised fuzzy logic algorithm. For instance, the clustering results showed a better ability 660 

to delimit and distinguish the bright band region. The AHC method also allowed exploiting the higher 

sensitivity of the X-band radar and permitted retrieving three different rainfall regimes by exhibiting 

light, moderate, and heavy intensities.  

The retrieved labelled clusters allowed making comparisons of the dominant microphysical species 

involved during both the wet and dry seasons of Brazilian tropical precipitation systems. Thus, the main 665 

discrepancy relies on the presence of one more microphysical species within the convective region of 
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the dry season, defined as high-density graupel. This microphysical species is probably the result of a 

deeper convection associated with precipitation systems that occur during this period of the year.  

Overall, the dry season ZH, ZDR, and KDP distribution shapes were quite similar to those of the rainy 

period; however, the distributions were shifted towards higher (lower) values for positive (negative) 670 

temperatures. The different rainfall intensities associated with the dry season generally exhibited higher 

ZH, ZDR, and KDP values than those during the wet season, leading us to believe that ice microphysical 

processes outweigh warm rain microphysical mechanisms. Finally, the retrieved tropical microphysical 

species distribution showed that both aggregates and ice crystals were shifted towards higher radar 

observable values in comparison to the mid-latitude X-band definition. These signatures might be due to 675 

the presence of a higher humidity amount within tropical regions, which may allow more dendritic-plate 

growth of aggregates and ice crystals microphysical species. 

 

Although the year 2014 was representative and complied with typical tropical precipitation events, the 

present study could be strengthened by an extended dataset as well as the use of i) in situ observations 680 

for validation tasks and ii) aerosols information to investigate microphysical differences between the 

wet and dry season. Nevertheless, this first detailed analysis of dominant hydrometeor distributions 

within tropical precipitation systems is promising and could also be extended to other radar frequencies 

and operational DPOL radars. Such improvements could be useful to identify key microphysical 

parameters for nowcasting issues, which are expected to be investigated in the near future through both 685 

the SOS-CHUVA (Brazil) and RELAMPAGO (Argentina) research projects. In this regard, the 

clustering methodology could be enhanced by taking into account the Doppler velocities to explore the 
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microphysical processes involved within vigorous updraft/downdraft regions of the cloud. Finally, these 

results could also be helpful in evaluating the microphysical parameterization schemes used within 

high-resolution numerical weather prediction models. 690 
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Location (3.21°S; 60.6°W; 60.9m) 

Radar Type Pulsed 

Polarization H-V orthogonal 

Transmission/reception Simultaneous 

Antenna 1.8 m diameter, 1.3° 3dB beamwidth 

Antenna gain 43dB 

Frequency 9.345 GHz 

Maximum range detection 100 km 

Range resolution 200 m 

10 min PPI elevation angles 0.5°/1.3°/2.1°/3.2°/4.3°/5.6°/7.1°/8.8°/10.8°/13.0°/ 

15.6°/18.5°/21.8°/25.6°/30.0° 

 

Table 1: X-band dual-polarization radar characteristics 

 

 

Linkage method Distance formula for d(S ∪ T, V) 

Weighted 𝑑(𝑆, 𝑉) + 𝑑(𝑇, 𝑉)2  

Centroid √𝑛𝑆𝑑(𝑆, 𝑉) + 𝑛𝑇(𝑇, 𝑉)𝑛𝑆 + 𝑛𝑇 − 𝑛𝑆𝑛𝑇𝑑(𝑆, 𝑇)(𝑛𝑆 + 𝑛𝑇)²  

Ward √(𝑛𝑆 + 𝑛𝑉)𝑑(𝑆, 𝑉) + (𝑛𝑇 + 𝑛𝑉)𝑑(𝑇, 𝑉)−𝑛𝑉𝑑(𝑆, 𝑇)𝑛𝑆 + 𝑛𝑇 + 𝑛𝑉  

 1105 

Table 2: Distance formulas for the weighted, centroid and Ward linkage rules. Here, S and T are two 

clusters joined into a new cluster, whereas V is any another cluster. nS, nT, nV are the number of objects 

contained in the clusters S, T, V, respectively. 
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TYPE DZ RN MH WS AG LDG HDG VI CR 

1S 38.64 % 0.01 % 0.00 % 10.34 % 32.91 % 1.31 % 0.00 % 4.47 % 12.34 % 

2S 0.02 % 0.21 % 0.00 % 43.51 % 42.66 % 11.91 % 0.00 % 0.02 % 1.67 % 

3S 64.36 % 27.55 % 0.21 % 7.88 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

4S 5.75 % 7.27 % 0.02 % 86.02 % 0.53 % 0.11 % 0.00 % 0.03 % 0.27 % 

5S 98.04 % 0.00 % 0.27 % 1.68 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 

Table 3: Confusion matrix comparing the clustering outputs from the stratiform region of the wet 

season and hydrometeor species retrieved from the adapted fuzzy logic. 
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TYPE DZ RN MH WS AG LDG HDG VI CR 

6C 77.00 % 21.70 % 0.99 % 0.31 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

7C 0.00 % 0.16 % 0.00 % 21.69 % 7.70 % 69.01 % 1.44 % 0.00 % 0.00 % 

8C 0.78 % 2.70 % 0.02 % 27.24 % 44.51 % 23.71 % 0.00 % 0.27 % 0.77 % 

9C 0.10 % 0.00 % 0.00 % 9.86 % 55.90 % 5.83 % 0.00 % 9.15 % 19.16 % 

10C 96.47 % 0.14 % 1.46 % 1.92 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

11C 31.42 % 62.98 % 1.24 % 4.36 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 

Table 4: Same as Table 3, but for the convective region of the wet season. 
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TYPE DZ RN  MH WS AG LDG HDG VI CR 

1S 76.30 % 22.17 % 0.10 % 1.43 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

2S 92.32 % 4.36 % 0.65 % 2.63 % 0.02 % 0.00 % 0.00 % 0.01 % 0.00 % 

3S 0.25 % 0.00 % 0.00 % 2.65 % 41.61 % 2.19 % 0.00 % 21.18 % 32.12 % 

4S 0.97 % 1.30 % 0.00 % 49.30 % 18.46 % 26.83 % 0.23 % 0.44 % 2.48 % 

5S 0.30 % 0.03 % 0.00 % 8.28 % 68.48 % 3.99 % 0.00 % 5.29 % 13.62 % 

 

Table 5: Same as Table 3, but for the stratiform region of the dry season. 
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TYPE DZ RN  MH WS AG LDG HDG VI CR 

6C 73.71 % 23.34 % 2.60 % 0.34 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

7C 21.61 % 73.56 % 1.00 % 3.83 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 % 

8C 0.07 % 0.01 % 0.00 % 5.62 % 51.01 % 2.70 % 0.00 % 12.72 % 27.87 % 

9C 0.16 % 2.32 % 0.00 % 27.80 % 7.41 % 60.40 % 1.86 % 0.00 % 0.04 % 

10C 0.79 % 0.17 % 0.00 % 13.48 % 51.19 % 30.91 % 0.00 % 0.83 % 2.63 % 

11C 0.00 % 15.29 % 0.51 % 64.19 % 0.19 % 11.4 % 7.72 % 0.00 % 0.00 % 

12C 97.19 % 0.00 % 0.41 % 2.34 % 0.06 % 0.00 % 0.00 % 0.01 % 0.00 % 

 

Table 6: Same as Table 3, but for the convective region of the dry season. 
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Figure 1: Schematic representation of the different hydrometeor classification techniques and their 

principal associated benchmarks. 
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Figure 2: (a) Geographical localization of the GoAmazon2014/5 and ACRIDICON-CHUVA 

experiments. (b) X-band DPOL radar coverage and its associated topography. 
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Figure 3: Evolution of the variance explained for different clustering linkage methods. Each linkage 1200 

method is subdivided in terms of stratiform (dashed line) and convective (solid line) regions. The 

orange vertical span highlights the interval potentially associated with the optimal number of clusters. 
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 1240 

Figure 4: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 

outputs at 12:07 UTC on 21 February 2014, along the azimuth 290°. DPOL radar observables are 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved hydrometeors for 

clustering outputs based on (e) weighted, (f) centroid, and (g) Ward linkage rules and (h) fuzzy logic 

scheme outputs. In panels (e)-(f)-(g), each number corresponds to a different cluster. ‘S’ stands for 1245 

stratiform regimes, whereas ‘C’ is for convective regimes.  
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Figure 5: Same as Figure 4, but for 13:57 UTC on 13 February 2014, along the azimuth 200°. 
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Figure 6: Clustering hydrometeor classification retrieved from the X-band radar at 12:07 UTC on 21 

February 2014, along the azimuth 290°. (a) With temperature constraint, (b) without temperature 

constraint. 
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Figure 7: Violin plot of cluster outputs retrieved for the stratiform regime of the wet season (DZ: 

drizzle, RN: rain, WS: wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre 

represents the interquartile range, and the thin black line extended from it represents the 95 % 

confidence intervals, while the white dot is the median. 
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Figure 8: Same as Figure 7, but for the convective regime of the wet season (LR: light rain, MR: 1300 

moderate rain, HR: heavy rain, GR: graupel, AG: aggregates, IC: ice crystals). 
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Figure 9: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 

outputs at 21:26 UTC on 08 September 2014, along the azimuth 200°. DPOL radar observables are 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of the retrieved hydrometeor for 

clustering outputs based on (e) weighted linkage rules and (f) the fuzzy logic scheme. In panels (e)-(f), 1335 

each number corresponds to a different cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for 
the convective region.  
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Figure 10: Same as Figure 7, but for the stratiform regime of the dry season (DZ: drizzle, RN: rain, 

WS: wet snow, AG: aggregates, IC: ice crystals). 
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Figure 11: Same as Figure 9, but for an RHI at 18:16 UTC on 06 October 2014, along the azimuth 

200°. 
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Figure 12: Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR: 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: 1345 

aggregates, IC: ice crystals). 
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Figure 13: Violin plot comparison of pairs of stratiform hydrometeor types between the wet and dry 

seasons (DZ: drizzle, RN: rain, WS: wet snow, AG: aggregates, and IC: ice crystals).  
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Figure 14: Same as Figure 13, but for the convective precipitation regime (LR: light rain, MR: 1350 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: aggregates, 

and IC: ice crystals). 
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APPENDIX A: Wet and Dry Season cluster centroids 

 

 1355 

 

Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km] 

1S 
Ice Crystals 

Small Aggregates 
17.18 1.17 0.21 0.98 + 2.23 

2S Aggregates 27.09 1.31 0.27 0.97 + 1.25 

3S Rain 27.28 1.43 0.10 0.97 - 2.49 

4S Wet Snow 27.54 1.83 0.07 0.95 - 0.10 

5S Drizzle 13.84 1.21 0.02 0.99 - 3.00 

6C Heavy Rain 44.18 2.09 1.88 0.98 - 2.81 

7C Graupel 36.28 0.74 0.34 0.98 + 2.76 

8C Aggregates 28.94 0.75 0.20 0.98 + 2.32 

9C 
Ice Crystals 

Small Aggregates 
17.62 0.91 0.22 0.97 + 3.07 

10C Light Rain 13.21 0.68 0.14 0.96 - 2.81 

11C Moderate Rain 31.09 1.39 0.50 0.98 - 2.74 

 

Table A.1: Cluster centroids for the wet season. 
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Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km] 

1S Rain 31.43 1.27 0.25 0.98 - 3.12 

2S Drizzle 20.66 0.89 0.07 0.98 - 3.16 

3S 
Ice Crystals 

Small Aggregates 
13.61 0.11 0.06 0.98 + 3.65 

4S Wet Snow 29.18 0.85 0.17 0.93 + 1.40 

5S Aggregates 19.65 0.71 0.11 0.98 + 3.04 

6C Heavy Rain 46.7 2.38 3.12 0.97 - 2.90 

7C Moderate Rain 34.18 1.24 1.06 0.97 - 2.82 

8C 
Ice Crystals 

Small Aggregates 
16.69 0.43 0.11 0.97 + 3.85 

9C 
Low-Density 

Graupel 
36.79 0.78 0.59 0.97 + 1.96 

10C Aggregates 24.75 0.45 0.18 0.98 + 3.20 

11C 
High-Density 

Graupel 
46.36 2.20 2.50 0.94 + 0.50 

12C Light Rain 14.47 0.27 0.21 0.97 - 2.89 

 

Table A.2: Cluster centroids for the dry season. 
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Abstract.  

Although Hydrometeor Classification Algorithms (HCAs) exist since several decades, their potential 

uses such as an additional tool for nowcasting issues related to high-impact weather events are relatively 

limited. Here, an unsupervised technique is firstly used to retrieve the dominant hydrometeor types 25 

associated with stormy days of the SOS-CHUVA field experiment thanks to an X-band dual-

polarization research radar. With this regard, stratiform echoes are composed of five microphysical 

species (light rain, rain, wet snow, aggregates and ice crystals), whereas convective regions have eight 

(light/moderate/heavy rain, hail, low/high density graupel, aggregates and ice crystals). Then the 

dominant microphysical life cycle of 23 severe convective cells is investigated with particular emphasis 30 

on their maximum activities in relation to lightning information (mature stage). It is shown that heavy 

rain, hail, graupels, and aggregates increase in terms of volumes as the SOS-CHUVA convective cells 

grow up. The time evolution of those four hydrometeor types, and especially graupels and ice crystals 

which are key microphysical species for thunderstorm electrification, are closely related to lightning 

rate and could help to prevent subsequent natural hazards associated to severe convective cells.  35 

 

 

 

 

 40 

Keywords: hydrometeor classification, tropical microphysics, dual-polarization radar, lightning, 

nowcasting 
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1. Introduction 

Although worldwide meteorological weather services have made considerable advances over past 

decades, forecasts accuracy associated to potential high-impact weather events for very short time 45 

periods (nowcasting) are still not yet enough at both space and time scales to avoid or at least 

sufficiently mitigate socio-economical disasters (Wilson et al, 1998). Convective storms manifest 

through various meteorological systems ranging from isolated thunderstorm to complex Mesoscale 

Convective Systems (MCSs). Associated damages caused by those meteorological events can be 

numerous over very short periods (hail, downburst, flash floods, lightning) and directly may affect 50 

human activities (road safety, flight assistance, power utilities). Therefore, a better understanding of 

physical processes at play within these intense events is required in order to improve forecast 

capabilities and also to provide objective procedures to meteorologists for anticipating their rapid 

evolution. 

Dual-polarimetric (DPOL) weather radar is one of the most widely and reliable used instruments 55 

nowadays for nowcasting by the research community and the national weather services. By using the 

high sensitivity resulting from the combination of two orthogonal polarized microwaves, numerous 

benefits have been learned from polarimetric radars for the detection of hazards in convective clouds 

over the last 30 years. For instance, the exploitation of polarimetric variables has allowed to improve 

the detection of damaging hail (Bringi et al, 1986), whereas Ryzhkov et al (2013) have proposed a 60 

method to differentiate the size of hail regardless of the DPOL radar wavelength. Recently, studies have 

suggested that precursors of hail could be associated to specific polarimetric radar signatures such as 

low coefficient correlation ρHV or even high specific differential phase KDP for temperatures lower than 
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0 ºC (Picca and Ryzhkov, 2012; Kumjian and Lebo, 2016). Another interesting feature deduced from 

polarimetric radars is the presence of positive differential reflectivity ZDR columns above ambient 0ºC 65 

isotherm, which are directly related to convective storm updrafts (Kumjian et al, 2014). With this 

regard, Snyder et al (2015) have developed an algorithm based on the detection of ZDR columns in order 

to detect initiation of new intense convective storms and to examine the evolution of related updrafts. 

Closely spaced to positive ZDR columnar regions, positive KDP columns above the melting level (T < 0 

ºC) have also shown to be good proxies of deep convection updrafts (Hubbert et al, 1998; Kumjian and 70 

Ryzhkov, 2008; Van Lier-Walqui et al, 2016). Finally, the exploitation of polarimetric radar variables 

has allowed to improve the forecast of tornadoes by focusing on the low level signatures and especially 

the ZDR and KDP footprints (Romine et al, 2008; Kumjian and Ryzhkov, 2008).  

One of the most important advantages from DPOL radars is their high sensitivity to hydrometeors and 

their related ability to discriminate between them (e.g. Vivekanandan et al, 1999; Ryzhkov et al, 2005). 75 

To date, various Hydrometeor Classification Aglorithms (HCAs) have been developed by using the 

synergy of the dual-polarimetric observables (horizontal reflectivity, ZH; ZDR; KDP; ρHV) along with 

external temperature information (Park et al, 2009; Dolan and Rutledge, 2009; Al-Sakka et al, 2013; 

Dolan et al, 2013; Bechini and Chandrasekar et al 2014; Grazioli et al, 2015; Ribaud et al, 2018; among 

others). Such HCAs have already demonstrated their utilities by improving quantitative precipitation 80 

estimation and helped to prevent flooding (Giangrande and Ryzhkov, 2008; Boodoo et al, 2015). For 

instance, Météo-France’s meteorologists have started to used hydrometeor identification as an 

complementary reliable nowcasting tool for anticipating potential high-impact severe weather related to 

specific convective storms.  
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Microphysical characteristics deduced from polarimetric radar in conjunction with lightning 85 

information have also demonstrated potential benefits in order to better understand convective clouds. 

For instance, Schultz et al (2015) have noticed that lightning jumps (rapid increase in lightning activity) 

are especially correlated to increases in graupel volume and updrafts characterized by vertical motion 

higher than 10 m/s within the [-10°C; -40°C] layer. According to Ribaud et al (2016), graupel volumes 

are good proxies for lighting initiation, whereas wet hail growth processes may have negative impact on 90 

lightning occurrences. Also, graupel intrusion within ice crystals layer can disturbed lightning activity 

by producing significantly higher lightning activity (Ribaud et al, 2016). Polarimetric signatures along 

with hydrometeor identification have also shown appealing capabilities to diagnose the evolution of 

different storm electrification stages in Brazil (Mattos et al, 2016; Mattos et al, 2017). Fuchs et al 

(2018) have also noticed that anomalous electrical charge structures are mainly associated with larger 95 

and stronger updrafts.  

Most of the aforementioned results are, or could be, used by forecasters in their decision-making to 

track and put more emphasis on potential hazards in a severe storm. To date, the time evolution of 

dominant hydrometeor relative to convective storms is not available in terms of a nowcasting tool. By 

statistically following the microphysical evolution of convective storms could led to another objective 100 

diagnose for nowcasting purposes. The present study aims at investigating the temporal evolution of 

each hydrometeor type volumes for sets of convective storms that occurred during the SOS-CHUVA 

project in Brazil, an extension of CHUVA project applied to nowcasting (Machado et al, 2017). With 

this regard, section 2 provides a brief overview of the SOS-CHUVA project and a description of the 

radar dataset. Section 3 deals with the HCA technique and retrieved hydrometeor types for the São 105 
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Paulo region, while section 4 presents the microphysical life cycle of convective cells in terms of 

volumes and altitudes. Finally, the main conclusions of this study are provided in section 5. 

 

2. Field experiment and datasets 

The present study is based upon data collected in the state of São Paulo during the SOS-CHUVA 110 

project which was conducted during intensive Operation Periods from 2016 to 2018. SOS-CHUVA is a 

multi-institutional research program focusing on nowcasting of severe weather events that occurred in 

South-East of Brazil during the wet season (November – March). To achieve this goal, the development 

of nowcasting tools for improving the forecasts capabilities and providing objective procedures for 

meteorologists is expected to rely on meaningful results learned from the CHUVA research program 115 

(Machado et al, 2014). The ability to get access to the microphysical structures of precipitating systems 

represents also an important objective of the SOS-CHUVA project. Among all the instruments deployed 

during this research program, a DPOL X-band weather radar was located in Campinas in complement 

of pre-existing operational Doppler radar network. Concurrently, dense ground-based observations via 

raingauges measurements have also been set up in the cities of Piracicaba and Jaguaríuna to document 120 

intense rain events. Figure 1 shows the map of the facilities used in this particular study.  

The DPOL X-band radar was operated in Simultaneous Transmission And Reception (STAR mode) and 

provided ZH, ZDR, the differential phase ΦDP , and ρHV. The polarimetric Campinas radar was designed to 

perform full volumetric scans every 10 minutes, each cycle was composed of 17 elevations ranging 

from 0.5° to 50º with a 1.3° beam width at – 3 dB. In addition, a vertical pointing scan for calibration 125 

purposes along with a 180º RHI scan over the Jaguaríuna raingauges network were performed.  
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The radar raw dataset has been pre-processed according to the procedure presented in Ribaud et al 

(2018). The processing chain consists in: (i) ZDR calibration by removing offset deduced from vertical 

pointing in precipitation; (ii) discrimination between nonmeteorological and meteorological echoes; (iii) 

correction of ΦDP offset and filtering; (iv) estimation of KDP (Hubbert and Bringi, 1995); and (iv) 130 

attenuation correction applied to both ZH and ZDR (Testud et al, 2000). To mitigate as much as possible 

potential bias or errors, dataset has been restricted to precipitation events wherein the radome was dry. 

In addition, a high Signal-Noise-Ratio ≥ 10 dB along with a reduced radar coverage ranging from 5 to 

60 km have been considered. Finally, the stratiform-convective separation described in Steiner et al 

(1995) has been applied to the radar dataset from horizontal reflectivity field at a constant altitude plan 135 

position indicator (CAPPI) generated at 3 km (T > 0°C).  

 

3. Hydrometeor classification for São Paulo region 

 3.a) methodology 

As mentioned in the introduction, there is plenty of HCAs proposed in the literature at all wavelengths 140 

and based on the combination of DPOL radar observables (ZH, ZDR, KDP, ρHV) and temperature data 

inferred from radio-soundings or model outputs. In this study one makes the use of two particular 

hydrometeor identification techniques: (i) the clustering approach, and (ii) the fuzzy logic. 

The core of the hydrometeor classification presented in this paper relies on an Agglomerative 

Hierarchical Clustering (AHC) method, which aims at identifying similar polarimetric observables 145 

signatures and gathering them into clusters. This technique is a bottom-up algorithm that considers each 

observation as a singleton cluster at the outset. Based on their similarities, pairs of clusters are then 
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iteratively aggregated until all clusters form an unique cluster containing all observations at the end. 

Finally, a posteriori analysis is performed by the user to determine the optimal number of clusters. With 

this respect, the reader is referred to Grazioli et al (2015) for background on clustering techniques, and 150 

Ribaud et al (2018) for the analysis of the clustering scheme sensitivity. Note that only relevant 

information that are needed for the understanding of the present analysis are detailed hereafter, while 

the entire description of the methodology is described in Grazioli et al (2015; hereafter G15) and have 

been taken over by Ribaud et al (2018; hereafter R18).  

The AHC method relies on the definition of objects which are five-dimensional vectors defined for each 155 

valid radar resolution volume as follows:  

x = {ZH, ZDR, KDP, ρHV, Δz} 

and where Δz is the difference between the radar resolution height and the isotherm 0°C deduced either 

from sounding balloons or NCEP reanalysis. Objects are standardized in order to not mislead the 

clustering method with the different order of magnitude of each object’s components. With this regard, 160 

polarimetric radar observations are concatenated into a [0; 1] common space thanks to minimum-

maximum boundaries rule, whereas the temperature information is mitigated into a [0; 0.5] range based 

on a soft sigmoid transformation where 0? (0.5) corresponds to altitude below (over) the brightband. In 

order to evaluate similarities/dissimilarities between clusters, the Ward linkage rule is considered along 

with the euclidean distance as metric (R18). As described in G15, the AHC algorithm do not only 165 

evaluate similarities/dissimilarities between clusters at each iteration step, but also check the spatial 

homogeneity of the clustering distribution by assuming a smooth spatial transition between clusters (i.e. 

hydrometeor types). Once the present setup is complete, the AHC method is applied to a subset of 25 
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000 observations randomly chosen from the SOS-CHUVA database and before being assigned to the 

remaining dataset using the nearest clustering rule due to time consuming issues when dealing with very 170 

large dataset. 

 

Concurrently, the X-band fuzzy logic algorithm of Dolan et al (2009; hereafter DR09) has been used to 

evaluate the clustering outputs from the AHC method. Initially it allows the discrimination between: 

Light Rain (LR), Rain (RN), Aggregates (AG), Low Density Graupel (LDG), High Density Graupel 175 

(HDG), Ice Crystals (IC), and Vertical Ice (VI). This classification has been slightly enriched of the Wet 

Snow (WS) and Melting Hail (MH) microphysical species by Besic et al (2016) through scattering 

simulations. In total, the adapted fuzzy logic allows to distinguish between 10 hydrometeor types and 

will refer as DR09 algorithm hereafter. 

 180 

 3.b) Hydrometeor classification  

According to the AHC method described in section 3.a, the algorithm has been conducted on the DPOL 

radar dataset for 13 case studies of intense rainfall events. Initially the AHC method randomly picked 

25 000 radar observations considering each of them as a singleton cluster. A simple hierarchical 

aggregation has been conducted until to reach 50 clusters (i.e. far from the final partition), whereas the 185 

following iteration step has also considered the analysis of the spatial smoothness. This setup has been 

separately conducted over both stratiform and convective regions. Here, the clustering outputs retrieved 

by the AHC method are identified and associated with their corresponding microphysical species. With 

this respect, the choice of the best trade-off about the optimal number of clusters have been manually 
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investigated beforehand, due to the intrinsic high complexity of representing all clustering partitions in 190 

this paper. Note that the complete SOS-CHUVA cluster centroids are given in Appendix A.  

 

  3.b.1) Stratiform echoes classification  

Figure 2 exhibits clustering outputs extracted from an RHI presenting typical stratiform echoes on 3 

December 2016 in the region of Campinas. Overall, clustering outputs are consistent with hydrometeor 195 

types retrieved by the fuzzy logic and DPOL radar signatures. For positives temperatures, clusters 3S 

and 5S (# referred to the cluster’s number and S stands for Stratiform clouds) are in agreement with the 

DR09 Rain and Light Rain microphysical species, respectively. Nevertheless, one can notice that the 

fuzzy logic Light Rain (x[25; 35 km]) ?? is more pronounced that the cluster 5S, whereas the clustering 

outputs present a more homogeneous region according to cluster 3S. The melting layer, characterized 200 

by very low (high) ρHV (ZH-ZDR) values, is well represented by the cluster 4S. Note that the DR09 

algorithm is mainly driven by temperature information within this specific layer, whereas the clustering 

algorithm allows to closely follow the DPOL signatures (x[3; 20km]). Finally, negatives temperatures 

are characterized by clusters 1S-2S which appear to correspond to Aggregates and Ice Crystals regions 

retrieved by the DR09 algorithm. 205 

To further investigate clusters’ characteristics, the ZH, ZDR, KDP, ρHV and Δz distributions are 

represented through violin plots in Figure 3, while the contingency table between the clustering outputs 

and the microphysical species retrieved by the DR09 algorithm is presented in Table 1. With this 

regard, clusters 1S and 2S are defined for negative temperatures and are associated with low ZH and KDP 

values together with a high coefficient correlation. One can see from the contingency Table 1 that 210 
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cluster 1S is mostly divided into Aggregates (47 %) and Ice Crystals (35 %), whereas cluster 2S is 

related to Aggregates (55%) and Wet Snow (30 %). The main discrepancy between both clusters 1S and 

2S relies on ZH distributions which spread around 17 dBZ and 25 dBZ, respectively. In this respect, R18 

has retrieved similar DPOL values for ice crystals and aggregates hydrometeor types associated with 

stratiform regions in Manaus and one can consider hereafter that cluster 1S correspond to Ice Crystals 215 

and cluster 2S to Aggregates. As noticed previously in Figure 2, cluster 4S exhibits all the melting layer 

characteristics on corresponding violin plots with low ρHV values (~ 0.91) and high ZH (~ 40 dBZ) and 

ZDR (2.9 dB) values. With 75% of agreement with DR09 algorithm cluster 4S is thus associated with 

Wet Snow hydrometeor type. Finally, only clusters 3S and 5S remain for positive temperatures. Cluster 

5S is characterized by lower ZH and ZDR distributions than cluster 3S, and is mainly associated with 220 

Drizzle (95 %) from contingency Table 1. With this regard, one considers that cluster 5S stands for 

Drizzle and cluster 3S for Rain.  

 

  3.b.2) Convective echoes classification 

Figure 4 shows a RHI of a convective cell that occurred on 29 November 2016 in the vicinity of 225 

Campinas. Overall the cell is characterized by a deep convective “tower” (x[26; 31 km]) that exhibits 

horizontal reflectivity up to 55 dBZ, high ZDR and KDP values for positive temperatures along with low 

coefficient correlation. With this respect, one can see that the clustering outputs are in agreement with 

DPOL signatures. While the DR09 retrieves three hydrometeor types for positive temperatures (Light 

Rain, Rain, and Melting Hail), the AHC method finds four different clusters (9C-10C-11C-13C). Those 230 

clusters seem to gradually follow the gradient of horizontal reflectivity until to define cluster 9C (# 
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referred to the cluster’s number and C stands for Convective clouds) as highly correlated to ZH up to 

50dBZ, ZDR up to 4dB, KDP up to 3°/km, and low ρHV values (< 0.92). Around the isotherm 0°C, the 

fuzzy logic scheme exhibits a melting layer defined by the Wet Snow hydrometeor type, whereas either 

radar observables do not present a bright band signature or clustering outputs. Finally, negative 235 

temperatures are characterized by clusters 6C-7C-8C-12C. Clusters 7C-8C seem to correspond to a mix 

of Low and High Density Graupel from the DR09 algorithm, whereas clusters 6C and 11C are in 

relation with Aggregates and Ice crystals, respectively.   

The violin plots in Figure 5 and the contingency Table 2 allow to fully characterize and identify 

clustering outputs for the convective regions. With this regard, one can notice that cluster 13C is 240 

defined for low ZH (~ 17dBZ) and high ρHV values (~ 0.98), and shares more than 85% with the Drizzle 

hydrometeor type (Table 2). The main differences between clusters 10C-11C rely on the ZH and KDP 

distributions. From the contingency Table 2, cluster 11C is divided into Drizzle (29%) and Rain (57%), 

while 90% of the cluster 10C correspond to Rain hydrometeor type. Thus, one consider hereafter that 

clusters 13C-11C-10C stand for Light, Moderate and Heavy Rain, respectively. Cluster 9C is 245 

characterized by very high ZH (~51 dBZ), ZDR (4 dB) and KDP (3°/km) distributions along with quite 

low ρHV values (~0.97). Although it mainly corresponds to Rain, 12% is in agreement with Melting 

Hail. Note that in the region of Campinas-São-Paulo it is not rare to observe hail during very convective 

events. Although hail falls have been noticed several times during the SOS-CHUVA, none of the 

hailpads deployed have unfortunately detected once. Therefore, one let the possibility to discriminate 250 

between purely liquid Heavy Rain (cluster 10C) and Melting Hail (cluster 9C). For negative 

temperatures, half of cluster 6C is associated with Aggregates, ~ 25% with Low Density Graupel and ~ 
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20% with Wet Snow. Also, polarimetric signatures agree well with the Aggregates DR09 T-matrix 

microphysical features and the work of R18. Although cluster 12C presents similar DPOL distributions, 

the main difference with cluster 6C resides in lower ZH values (19 vs 28 dBZ). According to Figure 4 255 

and those polarimetric characteristics, one attributes cluster 6C to Aggregates and cluster 12C to Ice 

Crystals. Also defined at T < 0°C, cluster 7C is highly in agreement with the Low Density Graupel of 

DR09 algorithm (~ 68%) and same hydrometeor DPOL signatures retrieved in R18. Finally, cluster 8C 

exhibits all the brightband characteristics and shares more than 75% with the Wet Snow (Table 2). As 

previously noticed on Figure 4, the convective cell do not exhibit a melting layer together with another 260 

PPIs and RHIs extracted from the AHC (not shown). With this respect, one might attribute cluster 8C as 

High Density Graupel, i.e. as …(Dolan def ???). 

 

  3.b.3) Ground validations 

Although making differences between different types of rain may be somewhat questionable, Figure 6 265 

presents comparisons of hydrometeor types retrieved from the clustering outputs defined for T > 0 °C in 

both stratiform and convective regions, with raingauge measurements observed in both Piracicaba and 

Jaguariuna sites during SOS-CHUVA (cf. Figure 1). The rationale for this approach is that the 

clustering outputs should be in agreement with ground observations. The analysis has been performed 

by considering the 3x3 neighborhood radar measurements for each raingauge station. Overall, one can 270 

notice that clustering outputs are in agreement with ground observations. Indeed, stratiform rains are 

characterized by rain rates (RR) lower than 5mm/h, whereas convective precipitations are defined for 
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RR ranging in average from 8mm/h to 15mm/h. Note that both convective Heavy Rain and Melting Hail 

clusters present large distributions and can sometimes reach more than 40mm/h.  

 275 

  3.b.4) Discrepancies and similarities with Manaus region 

The present hydrometeor classification allows to make a brief comparison with microphysical species 

retrieved through the work of R18 based on both the same AHC methodology and the DPOL X-band 

radar deployed during both the Go-Amazon2014/5 (Martin et al; 2017) and ACRIDICON-CHUVA 

(Wendisch et al, 2016) in the region of Manaus in Amazonas (Latitude: -3.21°; Longitude: -60.60°). 280 

Note that Manaus is surrounded by an equatorial forest whereas Campinas is located in a deeply urban 

region, nearly the Tropic of Capricorn. Overall, one can notice that the stratiform regions exhibit the 

same hydrometeors in terms of number and types, whereas the convective echoes associated with 

Manaus wet (dry) season do not show Melting Hail and High Density Graupel (Melting Hail) in 

comparison to Campinas region cloud microphysics. 285 

Nevertheless, the hydrometeor type presenting the highest difference with Manaus region is the Wet 

Snow that characterized the melting layer. The Amazonas region is characterized by horizontal 

(differential) reflectivities around 30 dBZ (1dB) against 40 dBZ (2 dB) in São Paulo. Also, the 

coefficient correlation is lower in São Paulo than Manaus region (0.91 vs 0.93). This is probably related 

to the larger ice size and concentration in Campinas region where deep convective processes are 290 

stronger than the monsoon convective clouds. 

Independently of the region between Campinas and Manaus, the cluster exhibiting the highest 

similarities in terms of DPOL signatures is the Heavy Rain category associated with convective regions. 
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This hydrometeor type is always characterized by mean ZH [43; 47 dBZ], ZDR [2; 3 dB], KDP [2; 3 °/km] 

and ρHV [0.97; 0.98]. Although the convective region can be affected by different kinematic and 295 

microphysical processes, it appears the dominant hydrometeor types for both Manaus and Campinas 

regions are very similar whereas the discrepancies are more related to how they are distributed inside 

the cloud. 

 

4. Microphysical life cycle of convective cells 300 

Getting access to the microphysical structure of severe weather events that occurred in the vicinity of 

Sao Paulo is part of the SOS-CHUVA objectives and is essential for assessing the severity of storm’s 

potential. As discussed previously, the development of nowcasting tools for meteorologists is needed to 

improve weather warnings.   

 305 

 4a. Cell tracking and lightning selection  

The Forecasting and Tracking the Evolution of Cloud Clusters (ForTraCc, Vila et al; 2008) has been 

used in order to put emphasis on microphysical life cycle of convective cells. This automated cell 

tracking algorithm has been adapted to work onto convective-stratiform outputs extracted from the 

Steiner et al (1995) methodology initially conducted on CAPPIs of ZH at 3 km (T < 0ºC) with a grid 310 

resolution of 1km x 1km. By using geometrical overlapping in successive time steps, the ForTraCc 

system aims at identifying each convective cell (via the center of mass) and following them in both 

space and time. With this regard, the reflectivity threshold employed was 40 dBZ, and the minimum 

size considered has been set up to 36 pixels in order to get geometrical overlapping in the 10 minutes 
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time step. Figure 7 presents 23 convective cell trajectories retrieved by the ForTraCC algorithm during 315 

the studied period. Overall, one can noticed that convective cells are associated with meteorological 

events crossing the radar domain from Northwest to Southeast. 

According to the identified convective cells, lightning information have been extracted from the 

BrasilDAT network, which is based on Earth Netwoks technology. The signals radiations associated 

with lightning discharges are received in the very large frequency band (1 Hz – 12 MHz), and lightning 320 

events (flashes) are retrieved by the Time of Arrival technique. Naccarato et al (2012) assessed the 

performance of the BrasilDat Network in the vicinity of São Paulo, which is composed of a higher 

number of sensors than elsewhere in Brazil. The authors found that the network efficiency was up to 

88% for cloud-to-ground flashes.  

In order to gather all the convective cells and explore the general microphysical evolution of the SOS-325 

CHUVA events, lightning information have been considered here to set a t0 time (synchronizing). With 

this respect, one assumed that the maximum of lightning activity (normalized by the convective area) 

corresponds to the maximum convective stage of the convective cell (t0). Then a time-window of one 

hour has been considered to put emphasis onto the microphysical life cycle from time evolution ranging 

from 0 to ± 30 minutes behind/ahead the t0 time. The choice of one hour interval has been motivated by 330 

previous results from TITAN project (Dixon et al, 1993) along with May and Ballinger (2007) which 

showed that the majority of convective cells exhibit a lifetime less than 60min, although global lifetimes 

associated to the parent cloud can be longer.  

 

  335 
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4b. Microphysical evolution of convective clouds 

The first microphysical aspect that has been investigated relies on the time evolution of volumes of 

hydrometeor types (Figure 8). With this regard, radar pulse volume has been associated with each 

hydrometeor type retrieved by the AHC method for the 23 convective cells. Results are presented in 

terms of “equivalent height”, hereafter referred to as H* and defined as:  340 

𝐻𝑖(𝑛) = 𝑉𝑖𝑆(𝑛) 
where V refers to the volume associated to the hydrometeor type i, and S corresponds to the surface area 

of the convective cell n. Overall the time evolution of the volumes associated with each hydrometeor 

type agree quite well with the representation of microphysical life cycle within convective cells (Figure 

8a). With this regard, volumes associated with Heavy Rain, Low and High Density Graupel, 345 

Aggregates, and to a lesser extent Melting Hail, sharply increase from t-30min before reaching their 

peaks at t0, and progressively decaying afterwards. Those hydrometeor types are well correlated with 

the time evolution of the convective cell structure which can be divided into initiation, mature, and 

dissipitating stages. Although the evolution of Ice Crystals volumes are similar to those previous 

hydrometeor types, it presents a delayed by 20 minutes. This is due to the mature-dissipitating 350 

transition, which acts to die out the storm from the bottom to the top and allows the growth of Ice 

Crystals for a longer time. Finally, both light and moderate rains exhibit the same signatures with low 

increase of weak precipitations until t0 before to sharply strengthen as the storm tends to dissipate. 

These results indicate that the microphysical life cycle is in agreement with the general representation 

associated with convective cell in terms of dynamics and model parametrization. 355 
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In order to assess the potential from monitoring hydrometeor type volumes for nowcasting perspectives, 

Figure 8b shows the first time derivative of microphysical volumes in relation to the “mean” convective 

cell. With this respect, one can noticed that the best precursors are Low and High Density Graupel along 

with the Aggregates hydrometeor types. They present variations of about 4 m/min between t-20min and 

t0, and thus could be considered to put more emphasis onto convective cells that present high positive 360 

volume variations of Graupels and/or Aggregates. Nevertheless, one should underline that the 

microphysical cloud representation is highly constrained by radar time resolution to complete an entire 

volume scan (i.e. 10 minutes here). For instance, microphysical processes may be affected and subject 

to quicker variations driven by dynamical effects. 

 365 

The time evolution of the mean altitude associated to the solid hydrometeor types (T < 0 ºC) is 

presented in Figure 9 from the same 23 convective cells extracted from the SOS-CHUVA dataset. 

While the mean altitude of High Density Graupel does not vary with height significantly and oscillate 

around 6 km, the Low Density Graupel hydrometeor type raises from 6.5 km to ~ 7.5 km between the 

initiation to the mature stage of the convective cell. This elevation of Low Density Graupel is 370 

particularly in agreement with the electrification processes at play for separating charge within the 

storm (and known as non-inductive mechanism, Takahashi et al 1978). Indeed, by lifting from 6.5 to 7.5 

km this microphysical type reaches cloud environment presenting negative temperatures of about [-15; -

20ºC] and according to Krehbiel et al (1986), “strong electrification does not occur until the cloud and 

precipitation develop above 7-8 km above MSL in the summer, corresponding to air temperature of -15 375 
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to -20°C”. Finally, both Aggregates and Ice Crystals follow the same evolution, presenting mean 

altitude differences between the initiation and 10min delayed from t0 of about 1 km.  

 

5) Conclusion 

The dominant microphysical species associated with convective systems that occurred during the SOS-380 

CHUVA field experiment have been investigated through combining X-band dual-polarization radar 

measurements and lightning information.  

According to the methodology initially developed by GR15 and the study of R18, an unsupervised HAC 

method has been developed to retrieve the dominant hydrometeor types of high-impact weather events. 

With this regard, it has been shown that SOS-CHUVA precipitating systems are composed of five 385 

hydrometeor types for stratiform regions (light rain, rain, wet snow, aggregates, and ice crystals), 

whereas convective echoes are defined by height microphysical species (light/moderate/heavy rain, hail, 

low/high density graupel, aggregates, and ice crystals). Although the validation of such HCA is a 

difficult task, it has been shown that ground observations via raingauges are in agreement with the 

different intensity of convective rains retrieved by the hydrometeor classification. Finally it has been 390 

noticed that the diversity of dominant hydrometeor types are quite similar between the tropical city of 

Campinas located in southeast of Brazil and the equatorial city of Manaus, suggesting that potential 

microphysical discrepancies may be more related to their own distribution within the cloud through 

dynamical processes.  

In a second step, a particular emphasis has been placed on 23 convective cells that occurred during the 395 

wet season of the SOS-CHUVA project. Microphysical aspects associated to the critical one hour period 
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focused on the mature stage of the convective systems have been investigated thanks to retrieved 

hydrometeor data and lightning information. With this regard, the time evolution of hydrometeor 

volumes and their respective first time derivative has reveal that heavy rain, low/high density graupel, 

aggregates and to a lesser extent hail are correlated to the development of the convective cell, making 400 

them good precursors for nowcasting tasks. As expected the height evolution related to low density 

graupel and ice crystals which are key microphysical species in relation to electrification processes, are 

also a good indicator to the convective cell development and potential resulting lightning.  

 

The present study could be extended by making use of extensive polarimetric radar measurements to 405 

reinforce retrieved microphysical properties associated to each hydrometeor type but also by 

investigating more severe convective cells. Results presented in this paper could be used to constrain 

and/or validate information derived by high-resolution numerical weather prediction suites, such as 

microphysical parametrization schemes. Finally, hydrometeor classification and the time evolution of 

heavy rain, low/high density graupel, and ice crystals volumes will be used by Brazilian forecasters in a 410 

near future. 

 

 

 

 415 
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Figure 1: (a) Geographical localization of the SOS-CHUVA project. (b) X-band DPOL radar domain 

and its associated topography, together with the raingauges locations for both Piracicaba and Jaguariúna 

sites.  615 

 

Figure 2: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 

outputs at 20:37 UTC on 03 December 2016, along the azimuth 19°. DPOL radar observables are 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) ρHV. Comparisons of the retrieved hydrometeor for (e) 

the clustering method and (f) fuzzy logic scheme. In panel (e), each number corresponds to a different 620 

cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for the convective region.   
 
Figure 3: Violin plot of cluster outputs retrieved for the stratiform regime (DZ: drizzle, RN: rain, WS: 

wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre represents the interquartile 

range, and the thin black line extended from it represents the 95 % confidence intervals, while the white 625 

dot is the median. 

 
Figure 4: Same as Figure 9, but for an RHI at 20:27 UTC on 29 November 2016,, along the azimuth 

19°. 

 630 

Figure 5: Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR: 

moderate rain, HR: heavy rain, MH: Melting Hail, LDG: low-density graupel, HDG: high-density 

graupel, AG: aggregates, IC: ice crystals). 

 

Figure 6: Boxplot comparisons for the hydrometeor types defined for T > 0 °C in both stratiform and 635 

convective regions with raingauge measurements for the whole dataset period. The black dot represents 

the mean, whereas the thin black vertical line is the median. 

 
Figure 7: Trajectories of convective cells considered. The green and red dots indicate respectively the 

start and the end if the trajectories.  640 
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Figure 8: Time series of (a) the microphysical equivalent heights, (b) the first time derivative of 

microphysical equivalent heights for the [t-30min; t+30min] life cycle of convective cells. t+0min 

corresponds to the maximum of lightning activity defined for each individual convective cell. 
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Figure 9: Time evolution of the mean altitude associated to solid hydrometeor types (T < 0°C) for the 

SOS-CHUVA convective cell. 
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TYPE DZ RN  MH WS AG LDG HDG VI CR 

1S  0.01 % 0.00 % 0.00 % 13.49 % 47.37 % 0.82 % 0.00 % 3.55 % 34.76 % 

2S 0.02 % 0.17 % 0.00 % 29.9 % 55.39 % 8.59 % 0.01 % 0.29 % 5.64 % 

3S 42.49 % 47.92 % 1.06 % 8.52 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

4S 0.04 % 3.44 % 0.05 % 75.14 % 1.01 % 16.98 % 3.05 % 0.00 % 0.29 % 

5S 95.2 % 0.01 % 1.73 % 3.06 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 
Table 1: Confusion matrix comparing the clustering outputs from the stratiform region and 

hydrometeor species retrieved from the adapted fuzzy logic. 
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TYPE DZ RN  MH WS AG LDG HDG VI CR 

6C 0.09 % 0.10 % 0.00 % 19.19 % 53.33 % 26.88 % 0.02 % 0.16 % 0.24 % 

7C 0.00 % 0.68 % 0.28 % 21.76 % 0.00 % 67.82 % 9.47 % 0.00 % 0.00 % 

8C 0.37 % 0.61 % 0.05 % 75.33 % 4.49 % 15.01 % 3.70 % 0.15 % 0.29 % 

9C 0.00 % 87.88 % 11.94 % 0.18 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

10C 0.01 % 90.33 % 5.41 % 4.25 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

11C 29.42 % 57.30 % 0.44 % 12.84 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

12C 0.08 % 0.00 % 0.00 % 20.00 % 49.49 % 1.23 % 0.00 % 4.33 % 24.87 % 

13C 85.38 % 0.34 % 2.26 % 12.01 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 

Table 2: Same as Table 3, but for the convective region 

 675 



29 

 

 

 

 

 

Figure 1: (a) Geographical localization of the SOS-CHUVA project. (b) X-band DPOL radar domain 

and its associated topography, together with the raingauges locations for both Piracicaba and Jaguariúna 

sites.  680 
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Figure 2: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 

outputs at 20:37 UTC on 03 December 2016, along the azimuth 19°. DPOL radar observables are 700 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) ρHV. Comparisons of the retrieved hydrometeor for (e) 

the clustering method and (f) fuzzy logic scheme. In panel (e), each number corresponds to a different 

cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for the convective region.  
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Figure 3: Violin plot of cluster outputs retrieved for the stratiform regime (DZ: drizzle, RN: rain, WS: 

wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre represents the interquartile 725 

range, and the thin black line extended from it represents the 95 % confidence intervals, while the white 

dot is the median. 
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Figure 4: Same as Figure 9, but for an RHI at 20:27 UTC on 29 November 2016, along the azimuth 730 

19°. 
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Figure 5: Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR: 

moderate rain, HR: heavy rain, MH: Melting Hail, LDG: low-density graupel, HDG: high-density 

graupel, AG: aggregates, IC: ice crystals). 
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Figure 6: Boxplots comparisons for hydrometeor types defined for T > 0 °C in both stratiform and 

convective regions with raingauge measurements for the whole dataset period. The black dots represent 

the mean, whereas thin black vertical lines are the median. 
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Figure 7: Trajectories of convective cells considered. The green and red dots indicate respectively the 775 

start and the end if the trajectories. 
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Figure 8: Time series of (a) the microphysical equivalent heights, (b) the first time derivative of 

microphysical equivalent heights for the [t-30min; t+30min] life cycle of convective cells. t+0min 

corresponds to the maximum of lightning activity defined for each individual convective cell. 
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Figure 9: Time evolution of the mean altitude associated to solid hydrometeor types (T < 0°C) for the 

SOS-CHUVA convective cell. 
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Appendix A: SOS-CHUVA cluster centroids 

 

Cluster Label ZH [dBZ] ZDR [dB] KDP [deg/km] ρHV [-] Δz [km] 

1S 
Ice Crystals 

Small Aggregates 
16.88 2.42 0.23 0.98 + 2.33 

2S Aggregates 24.83 2.1 0.23 0.99 + 1.85 

3S Rain 35.77 2.94 0.27 0.98 - 2.11 

4S Wet Snow 39.83 2.91 0.29 0.91 + 0.69 

5S Drizzle 11.59 1.94 0.06 0.97 - 2.66 

6C Aggregates 28.08 1.45 0.15 0.99 + 2.13 

7C 
Low Density 

Graupel 
41.4 1.24 0.47 0.98 + 2.09 

8C 
High Density 

Graupel 
39.48 2.9 0.36 0.92 + 0.68 

9C Melting hail 51.32 4.39 2.85 0.97 - 2.32 

10C Heavy Rain 43.56 2.88 1.65 0.98 - 2.33 

11C Moderate Rain 30.23 2.88 0.31 0.98 - 2.08 

12C 
Ice Crystals 

Small Aggregates 
19.14 2.1 0.15 0.98 + 2.11 

13C Light Rain 17.45 2.28 0.11 0.98 - 2.13 

 

Table A.1: Cluster centroids for the SOS-CHUVA project. 830 



ANEXO 3: 

J.-F. Ribaud, L.A.T. Machado, and T. Biscaro. Dominant Hydrometeor Type Distributions within 

Brazilian Tropical Precipitation Systems Inferred from X-Band Dual Polarization Radar Measurements. 

Poster, 38th Conference on Radar Meteorology, Chicago, IL, USA, 28 August-1 September 2017. 
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