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A B S T R A C T

Estimates of surface precipitation obtained from passive microwave sensors over land are closely related to the
ice path present in the clouds. However, there are cloud types without any ice or with an ice layer not thick
enough to justify the associated rainfall. For these cloud types, the precipitation is not estimated correctly,
causing an underestimation of the precipitation. On the other hand, there are cases of deep clouds, in which the
signal produced by ice scattering is not effectively associated with precipitation, producing, in turn, an over-
estimate of rainfall. This study analyzes cases that have large errors in the rainfall estimates obtained from
passive microwave data to better understand and potentially mitigate these biases. This study uses data from the
Tropical Rainfall Measuring Mission (TRMM) satellite, specifically the Precipitation Radar (PR), TRMM
Microwave Imager (TMI) and Lightning Imaging Sensor (LIS). Ten years of TRMM data (2002−2011) are used in
the analysis. The study area is approximately 1,110,000 km2, centered on the city of Manaus in the Amazon
region. The error distribution resembled a Gaussian distribution. The error population was then divided into
three categories, one class denominated as consistent, in the center of the distribution (20 percentile to 80
percentile), and the others two, as under- and over-estimated populations, representing the tails of the dis-
tribution. For under- and over-estimated categories, the vertical structure of the clouds was evaluated. The
underestimation error is correlated with almost all cloud properties (rain rate, cloud top, Liquid Water path
(LWP), Ice Water Path (IWP), polarization and Polarization Corrected Temperature at 85 GHZ (PCT85)) while
the overestimation error is only function of the IWP. The use of combinations of low and high frequency channels
was able to identify some characteristics associated with under- and over-estimated cases. A high positive dif-
ference between the 10 GHz and 85 GHz as well as 19 GHz – 85 GHz is characteristic of very high scattering at
85 GHz (high amount of ice) and small liquid water amounts corresponding to cases that are often overestimated
by the radiometer. On the other hand, underestimated cases have smaller ice particles that are not sensitive to
the high frequency microwaves channels measured by TMI. These results open potential new avenues to improve
the quality of passive microwave rainfall estimates.

1. Introduction

Satellite borne radiometers operating in the passive microwave
frequency range measure the radiation emitted and scattered by the
surface, atmospheric gases and the solid and liquid phases of water.
Based on the interactions between the atmospheric hydrometeors and
the microwave radiation, two processes can be used to estimate pre-
cipitation: emission/absorption from raindrops, which causes bright-
ness temperature to increase over a radiatively cold background like the
ocean and the scattering by the larger hydrometeors, which causes a
decrease in microwave radiation (Kidd and Levizzani, 2011; Prigent

et al., 2005).
Precipitation estimation from passive microwave over oceans is well

established, as the low surface emissivity allows for a strong contrast
between a radiometrically cold background and a warm precipitation-
related atmospheric signature (Kummerow et al., 2001, 2011). Rainfall
retrieval over land, however, remains problematic (Carr et al., 2015),
because of the higher and variable surface emissivity which appears
very similar to the emission from clouds and precipitation. High-fre-
quency channels are therefore more frequently used to estimate rainfall
over land (Gopalan et al., 2010), based primarily on brightness tem-
perature depression caused by ice scattering, coupled to some
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relationship between the ice aloft and the surface rain rate.
The ice water content and particle habits may be used as an in-

dicator of its precipitation potential. The ice water content of a system
can also be related to electrical activity. The work of Mattos and
Machado (2011) suggested than an increase in the average occurrence
of cloud to ground lightning is associated with an increment in ice
particle size and ice water content. Petersen et al. (2005) used lightning
and radar observations of TRMM to study the fundamental relationship
between precipitation ice mass and lightning flash density. The results
indicated that, on a global scale, the relationship between precipitation
ice water path and lightning flash density is relatively invariant be-
tween land, ocean and coastal regimes. These indicators can be applied
to passive microwave-based rainfall estimation algorithms over land
(Ferraro et al., 2005; Vila et al., 2007; Weng et al., 2003). However,
there are cloud types without ice layers or with an ice layer not thick
enough to justify the associated rainfall. Such clouds are common is the
Amazon during the wet season, when the Cloud Condensation Nuclei
(CCN) concentrations are relatively small while the humidity is high. As
a result, clouds droplets rapidly grow to rain drops and fall without
going through an ice process. These clouds do not have much time to
grow, reaching a maximum height of 4 or 5 km (Silva Dias et al., 2005).
According to Nesbitt et al. (2000) the occurrence of precipitation fea-
tures without an ice scattering signature is often observed in the Tro-
pical region and is poorly quantified using an ice scattering techniques
alone.

On the other hand, there are also cases of deep clouds where ice
scattering signature inferred by satellites are not well correlated with
rainfall. These cloud types will be problematic for satellite based pre-
cipitation schemes as well. According to You et al. (2011), the frozen
hydrometeor population aloft often has an inconsistent and less direct
relation with surface rainfall and varies significantly from region to
region.

The diversity of the precipitating cloud systems makes the under-
standing of the vertical structure of storm systems a subject of great
importance for satellite rainfall estimation over land. The main goal of
this study is to evaluate the radiative properties, the vertical structure,
and the broader characteristics of the clouds in which cloud ice water
content lacks a direct relationship to precipitation. The knowledge of
the physical behavior of these clouds provides the basis for further re-
finements in microwave rainfall estimation algorithms.

Section 2 describes the satellite data used in this work. Section 3
describes the classification strategy employed to identify clouds that
either overestimate or underestimate rainfall. Section 4 presents the
cloud vertical structure for these overestimated and underestimated
cloud types, while Section 5 evaluates the potential of lower channels
frequencies to identify characteristics of the overestimated and under-
estimated cases. Finally, conclusions are presented in Section 6.

2. Data

This study uses data from the Tropical Rainfall Measuring Mission
(TRMM) satellite, made available by the University of Utah. The data is
produced with a combination of the version 7 orbital 1B01, 1B11, 2A12
(Kummerow et al., 2001), 2A23, 2A25 (Iguchi et al., 2000), 2B31, 2H25
and version 4 of the LIS granules after TMI-PR (TRMM Microwave
Imager - Precipitation Radar) parallax correction and TMI-PR-LIS-VIRS
(Lightning Imaging Sensor - Visible and Infrared Scanner) nearest
neighbor co-location (Liu, 2013). Ten years of TRMM data are used
(2002–2011) for the current analysis. In order to avoid data with dif-
ferent spatial resolutions, only data after the orbit boost maneuver in
August 2001 are used. To avoid possible inconsistencies associated with
pixel collocation, the TMI-PR paired search was done using a matrix of
3× 3 PR pixels for each TMI pixel (similar to Kidd et al., 2017), se-
lecting the PR value with the smallest difference in rain rate when
compared to the TMI precipitation using the Goddard Profiling Algo-
rithm (GPROF – Kummerow et al., 1996).

An area of the Amazon (Fig. 1) was chosen due to the frequent
occurrence of deep and shallow convective clouds (Giangrande et al.,
2017). According to the MERGE data product (Rozante et al., 2010), a
technique that combines TRMM satellite precipitation estimates with
surface observations over South America, mean annual rainfall in the
study region varies from 1450 to 3000mm.

We used the vertical profiles of reflectivity, surface rain and rain
type from PR and lightning information from LIS to define clouds. The
10, 19, 21, 37 and 85 GHz brightness temperatures (Tb) as well as
surface rain from the GPROF algorithm were evaluated against the
cloud structure information; For the 37 and 85 GHz channels, the po-
larization corrected brightness temperature (PCT) values are calculated
(Spencer et al., 1989) to reduce the effect of different surface emissiv-
ities. Over wet surfaces, the PCT is used to remove radiometrically cold
surface features such a standing water. This correction is be pertinent in
the Amazon region due to the width of the Amazon River. Only the
vertical polarization is used for the other channels. For the lower fre-
quency channels, it was decided to work with the original spatial re-
solution, as in You et al. (2011). The collocated TMI and PR data were
classified according to the rain type data (convective, stratiform and
others) available in the PR 2A23 (Awaka et al., 2009).

The cases classified as convective were subdivided into “convection
certain” and “convection possible” as well as “stratiform certain” and
“stratiform possible”. This study focuses primarily on the cases classi-
fied by the algorithm as “convective certain” in order to focus on these
clouds. All other cloud types are groups on the “other” category. The
total number of pixels classified by rain type as convective is shown in
Table 1.

3. Identification and characterization of the convective cases

In the present study, rainfall from TRMM's passive microwave
sensor (TMI) was estimated using the GPROF algorithm, herein referred
as RRTMI. The precipitation radar's rainfall, herein referred as RRPR, is
considered the reference rain rate. While RRPR may have its own error
sources, they are generally considered smaller over land than the

Fig. 1. Studied region indicated by the white box and the mean annual rainfall
for the period from 2002 to 2010 using the MERGE data.

Table 1
Statistical errors between GPROF and PR data.

Statistics for convectives rain Studied error population

Total eixels 72,166
Accepted pixels using 50% error criterion 60,681
Rejected pixels 11,485 (~16%)
Rejected pixels PR ~ 96%
RR≤15mmh−1 TMI ~ 78%
Mean RRPR 8.8 mmh−1

Mean RRTMI 8.9 mmh−1

RMSE 2.0 mmh−1

Mean error 15.7%
Standard deviation error 20.1%
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indirect estimates from the radiometer.
As previously mentioned, there are clouds where the amount or the

absence of ice aloft does not correspond well to the expected rain rate.
These are precisely the cases of interest in the present study, where an
overestimate or underestimate of the rain rate is defined based upon
RRTMI relative to RRPR. Bias errors are normalized as shown below:

Error RR RR
RR

X100TMI PR

PR
= −

(1)

From the calculated error of each pixel, frequency distributions of
these errors were generated as well as the ratio between RRTMI and
RRPR versus RRPR (not shown). It was observed that the distribution of
ratio between rain rates resembled a Gaussian function, although
slightly more elongated for the overestimate errors with a higher fre-
quency of cases with ratio values close to one. In addition, the dis-
tribution has a large tail for high bias values, however the higher the
RRPR the lower the ratio (error) between precipitation rates. These
larger biases are probably associated with co-location errors, particu-
larly since the TMI has a slant path, and the PR is essentially vertically
(downward) pointing. This represents a significant amount of scatter
when comparing individual pixels, but should not cause systematic
biases as the storm and satellite orientations can be thought of as
random for the purposes of this study. To eliminate the effect of these
outliers, a threshold of −50% to 50% error was defined. Pixels outside
this range were eliminated (~16% – see Table 1). This additional
procedure avoids the co-location problems following the same proce-
dure employed by Gopalan et al. (2010).

Fig. 2 shows the error distribution and the under- and overestimated
populations. The mean absolute error is 15.7% and the standard de-
viation is 20.1%. This population is then divided into three categories:
A “consistent” class, in the center of the distribution, and the under- and
over-estimated classes, representing the tails of the distribution. For this
study, the under- and over-estimated classes are defined as the smallest
and largest 20 percentile of the distribution respectively, while the
consistent class is defined between the 20 and 80 percentile. With this
definition, the underestimated class corresponds to errors between
−50% and− 14.5%, while the overestimated class corresponds to
error between +18.2% and +50%. The consistent class corresponds to
errors larger than −14.5% and smaller than 18.2% (Fig. 2). The basic
statistics are shown on the Table 1. Although, the 20 percentile limits
correspond nearly to the absolute error or the distribution standard

deviation, others percentiles were evaluated during the analysis. A 15
percentile limit (−18.5% to 23.5% errors), 10 percentile (−23.8% to
29.8% errors) and 5 percentile (−31.6% to 38.4%) were also con-
sidered.

Petković and Kummerow (2017) studied rainfall estimation errors
over the Amazon relative to the African Congo region. While the two
regions had large overall bias differences, they could attribute the re-
gional biases to systematic differences between PR and TMI rainfall in
specific regimes defined in their study as shallow, deep-unorganized,
and deep-organized convection. Shallow and deep-unorganized regimes
tended to be underestimated by the passive microwave-based algorithm
by 33% and 10%, respectively, while, the deep-organized regime
rainfall was overestimated by 41%. Regional differences in that study
could be accounted for by the difference in the relative frequency of
occurrence of each of the cloud regimes. The average error reported in
that study are very close to the ones obtained here.

In order to evaluate the relationship between the under- and over-
estimated populations as a function of the rain rate, the two distribu-
tions were evaluated as a function of the PR rain estimates. Fig. 3 shows
the relative frequency distribution determined for the rain rates esti-
mated for the under- and over-estimated populations. Proportionally,
underestimated cases have a predominately large populations of rela-
tively small rain rates (smaller than 5mmh−1), and the errors can be
seen to be a function of rain rate. In contrast, overestimated rain rates
consist primarily of larger rain rate than the underestimated popula-
tion, and the absolute error is not a function of the rain rate. There is
only a slight difference among the overestimated error among the dif-
ferent percentiles.

4. Cloud vertical structure

The analysis of the vertical structure of the clouds belonging to the
under- and over-estimated categories can shed some light on the lim-
itations associated with satellite precipitation estimates from only the
passive microwave channels. As hypothesized, the overestimation is
related to large ice content, low liquid water content and possibly the
bright band presence in the average reflectivity profiles. The opposite
occurs in the underestimated cases, where there is probably a thinner
ice layer and higher values of liquid water, resulting in an under-
estimation of the precipitation rate from the PCT85.

One way to evaluate the cloud vertical structure for each population
is to compute the Contoured Frequency by Altitude Diagrams (CFAD).

Fig. 2. Frequency distribution of the normalized error calculated using the rain
rates estimates from PR and TMI. The colors blue, gray and red represent the
three categories, underestimated, consistent and overestimated classes, re-
spectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Underestimated and overestimated cases frequency distribution as
function of the rain rates estimates from PR. Under- and over-estimated po-
pulations are classified by the 20%, 15%, 10% and 5% percentiles for the tail of
the distribution.
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The CFADs are two-dimensional diagrams that provide the frequency,
in this case, of reflectivity with height. In this way, it is possible to
analyze the variability of the vertical profiles of reflectivity rather than
the average value of the profile, which can sometimes mask the results.
Fig. 4 presents the CFADs for the over- and under-estimated popula-
tions. The two CFADs are very similar, with only a few notable differ-
ences. The middle layer just above the melting layer shows the most
important difference. The overestimated population shows higher re-
flectivity values at this level than the underestimated population.
CFADs generated according to the precipitation intensity for the over-
estimated and underestimated populations (not shown) present more
significant differences between populations. Fig. 3 shows proportion-
ally higher rain rates for the overestimated population; therefore, we
expect that the CFAD will also reproduce this feature. For a more de-
tailed view of these two population features, the subsequent analysis
focuses on properties of the cloud top and microphysical parameters.

To evaluate the echo-top height within each category, frequency
distributions were generated according to the echo-top height. A
threshold of 17 dBZ was used as the minimum detectable signal of the
PR. Fig. 5 shows that the underestimated cases have larger relative
populations with an echo-top height up to around 9 km, while over-
estimated cases have larger relative populations with echo tops above
this height. This behavior is consistent with lower rain rates estimated
by GPROF due to the lower ice water content of shallower clouds and
the opposite in the case of deep convective clouds. However, both po-
pulations span the range of clouds tops, and the small differences in the
CFADs cannot fully explain the retrieval errors. Another important
consideration is the difference in the distribution of cloud tops as a
function of the over- and under-estimation. The absolute error as a
function of the cloud top and rain rate is showed in Fig. 5. Clearly, the
overestimation does not depend on the cloud top, since the relative
frequency of the cloud top remains almost constant despite changes in
the error considered.

To explore biases in more details, the values of Liquid Water Path
(LWP), and Ice Water Path (IWP), electrical discharges detected by LIS
and the polarization difference at 85 GHz were also calculated.

The reflectivity profiles obtained from PR together with Eqs. 2 and 3
(Wang et al., 2007) were used to compute LWP and IWP. LWP was
computed for the layer between the surface and the height of 5 km
while IWP was calculated for the layer between 5 km and the cloud top.
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swhere, ZHrain and ZHice, in mm6m−3, is the reflectivity below and
above 5 km respectively, ρi is the density of ice (917 kgm−3), N0

(4× 106 m−4) is the intercept parameter, level0 is the altitude based on
0 °C isotherm height (chosen as 5 km), htop (km) is the cloud top and
(km) is the altitude.

Fig. 6 shows histograms for the frequency distribution of IWP, flash
rate (referred to as LIS), the 85 GHz polarization signal (TbV-TbH), the
atmospheric scattering signal at 85 GHz (PCT85) and LWP. It was ver-
ified that, for the overestimated cases, there are relatively more cases
with higher values of IWP and flash rates (Fig. 6a and b), more cases
with 85 GHz polarization difference (TbV-TbH)< 2 K (Fig. 6c), and a
slight difference for smaller values of LWP (Fig. 6e). For the under-
estimated cases, the exact opposite happens: slightly higher LWP values
and lower IWP and LIS values, which is consistent with a lower PCT85
and an underestimation of the rain rate. The majority of underestimated

Fig. 4. Contour frequency by altitude diagrams (CFAD) of reflectivity according to height profile for overestimated and underestimated categories. The vertical lines
indicate the reflectivities of 20 and 35 dBZ.

Fig. 5. Relative frequency distribution of echo-top 17 dBZ. Overestimated cases
are indicated in red and underestimated cases in blue. Under- and over-esti-
mated populations are classified by the 20%, 15%, 10% and 5% percentiles for
the tail of the distribution.The vertical line indicates the height of 9 km. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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cases have positive polarization differences that are associated with
frozen particles and stratiform cloud regions (Prigent et al., 2005). As
expected the overestimated cases have a higher frequency of low
PCT85, implying a large amount of scattering, while the opposite is
observed for the underestimated cases where PCT85 occurrences peak
at 270 K (Fig. 6d). For LWP, IWP and LIS, the differences between the
categories are more subtle and less significant. It is important to note
that for the flash rate frequency distributions over Amazon region
(Fig. 6b), 96.6% of the underestimated cases and 94.7% of the over-
estimated cases do not have any lightning associated with them. Only
3.4% of the underestimated cases and 5.3% of the overestimated cases
have flash rate higher than 0 flash min−1. Wang et al. (2012) used the
LIS data to understand the relationship between lightning flash rate and
active and passive microwave precipitation observations. The study
revealed that only 6% of the rain data have lightning flash rates greater
than zero, nevertheless, 86.5% of lightning occurred over convective
cloud and the remaining in stratiform clouds.

Fig. 6 also presents some interesting results related to the different

percentile populations used to define the outliers for all these para-
meters. PCT85, polarization, LWP and LIS have little variability across
the different percentiles for the overestimation cases. Only for IWP
there is a clear distinction among the different percentiles. The un-
derestimated population absolute error is function of the rain rate,
cloud top, LWP, IWP, PCT85 and polarization. As such, it is difficult to
attribute the underestimation to any particular cause. However, the
absolute error of the overestimated population is chiefly a function of
the IWP. The result shown above illustrates some of the complexities in
determining biases in passive microwave rain estimates.

An alternative analysis is therefore carried out that separates clouds
by their maximum height, using 9 km to separate congestus and deeper
convective cloud populations (see Wang et al., 2018). Petković and
Kummerow (2017) also used the same cloud top classification. Com-
posite reflectivity profiles for these two cloud top categories were
stratified according to IWP for over- and under-estimated rain rates.
Only cloud tops above 5 km were considered as this represents a cloud
ice analysis. Fig. 7 presents the vertical reflectivity profiles of the over-

Fig. 6. Relative frequency distribution according: a) IWP; b) LIS; c) Polarization difference in Tb at 85 GHz; d) PCT at 85 GHz; and e) LWP. Overestimated cases are
indicated in red and underestimated cases in blue. Under- and over-estimated are classified by the 20%, 15%, 10% and 5% percentiles for the tail of the distribution.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and under-estimated populations for clouds above and below 9 km. The
composites were classified as a function of the IWP, so one can expect
similar profiles above 5 km. Below 5 km, however, overestimated and
underestimated categories are very different. The underestimated ca-
tegory has higher reflectivity values below the melting layer than the
overestimated cases. One physical process that could explain these
lower reflectivity values found below the melting layer for over-
estimated cases is if the clouds are in the dissipation phase of their life
cycle. In the dissipation phase, clouds normally have a considerable
amount of ice associated to small rain rates. These underestimated cases
are probably associated with efficient shallow warm cloud rainfall
processes, but for deep convective clouds the same behavior is ob-
served. One can note that the underestimated population of deep

convective clouds also shows smaller reflectivities above the melting
layer for the higher IWP (> 1.5 kgm−2). These deep convective clouds
have smaller amounts of ice and higher reflectivities in the lower levels.
These are clouds with rainfall mainly originating from warm cloud
processes with a reduced ice melting contribution to rain rate.

5. Multi channels approach to classify overestimation and
underestimation cases

The previous sections detail the variability in PCT85 with respect to
rain rate. Additional channels available on spaceborne radiometers,
although usually associated with difficulty to interpret emissions sig-
nals, may help. Two filters using additional channels were developed to

Fig. 7. Mean reflectivity profile of the underestimated and overestimated clouds populations for two classes of IWP values. a) Clouds with echo top below 9 km; b)
Clouds with echo top above 9 km. Overestimated cases are indicated in red and underestimated cases in blue. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Density scatter plot diagram for rainfall error estimation as function of the differences between the brightness temperatures a) 10–85 GHz; b) 19–85 GHz; and
c) Bin 10 K mean value of the differences between rainfall error estimation as function of the PCT85.
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better explain over- and under-estimated cases. The first one uses 10, 19
and 85 GHz channels, which corresponded better to the overestimated
cases, while the second uses 10, 19, 21, 37 and 85 GHz channels, which
corresponds better to the underestimation cases.

The behavior of the 85 GHz channel, which exhibits scattering from
relatively small ice particles, is well known and studied by several
authors (Gopalan et al., 2010; Wang et al., 2012). According to You
et al. (2011) the combination of the 19 and 37 GHz or 21 and 37 GHz
channels can explain ∼10% more variance of near surface rainfall rate
than can the TbV85 channel for most continental tropical regions. Ex-
ceptions are the desert, arid, and semi-arid areas, but these are not
present in the current study area. The additional signal in the 19 and
37 GHz combination is due to liquid water information, which is more
directly related to surface rainfall than ice water aloft. If two channels
have similar emissivities, then their differences largely describe the li-
quid water absorption. In heavy rainfall conditions, the combination
TbV19-TbV37, TbV37 and TbV85 are all correlated with near-surface
rainfall. The highest correlations can be found at TbV37 or TbV21
channels, most likely because these clouds contain very large ice
amounts that produce significant scatter even at these lower fre-
quencies. To further explore the utility of additional channels, Fig. 8
shows the relationship among channel differences between 10 and
85 GHz (10–85 GHz) and 19–85 GHz, relative to the rainfall estimation
errors. The density scatter plot of the TMI channels differences and
PCT85 bins in 10 K bins are presented in Fig. 8a, b and c. Both differ-
ences show nearly the same behavior, with a very small population of
negative differences and a reduction of the amplitude as positive dif-
ferences increase. The negative differences correspond to the rare si-
tuation of less scattering at 85 GHz than the absorption at 10 GHz and
19 GHz. For the positive differences, there is no clear pattern aside from
the error reduction as the differences increase. However, the number of
overestimated cases increases as the brightness temperature differences
increase. These are the situations with very high scattering at 85 GHz
(high amount of ice) and less water in the liquid state, resulting in a
lower absorption by the 10 GHz and 19 GHz channels. Fig. 8b shows the
error and the 10 K bin mean PCT85. One can note that PCT85s colder
than 180 K are statically associated with an overestimation in pre-
cipitation.

The idea of exploiting the absorption channels (10–37 GHz) was
also pursued. Channel differences may have information if one assumes
that their emissivity is relatively invariant over land. The difference
would then represent an atmospheric signal that may be related to
precipitation. Fig. 9 shows the density scatter plot between precipita-
tion estimation errors against brightness temperature differences

between the channels 19–10 GHz, 21–10 GHz and 37–21 GHz for all
cases classified as convective. The differences between the brightness
temperatures basically vary between −60 and 40 K and there is no
clear pattern among the difference and the error. This lack of signal
between these closely spaced frequencies does not allow these fre-
quencies to be used to reduce rainfall estimation error.

6. Conclusions

This study evaluates the rainfall estimation error from a well known
passive microwave algorithm. The error was defined as the absolute
error between the rainfall estimated by GPROF and the TRMM PR. The
error categories were defined in the range of percentiles: 0% to 5%,
10%, 15% and 20% for the tail of the distribution.

This allowed us to examine the relationship between the rainfall
bias and a number of different variables (IWP, lightning, polarization,
LWP, PCT85, cloud top heights and reflectivity vertical profiles). These
analyses were done with the goal of classifying and understanding the
cloud characteristics that lead to errors in the passive microwave esti-
mation.

The population of underestimated rainfall cases can be associated
with lower rain rates than overestimated cases. It implies that the ab-
solute error for underestimated cases comes predominantly from rain
rates< 2.5 mmh−1. Overestimated cases, in contrast, tend to have
larger rain rates. Moreover, the degree of bias tends to be correlated
with the rain rates for underestimation, while the overestimation errors
are uncorrelated with the rain rate itself.

The vertical profile of reflectivities, the CFADs, did not show large
differences among the over- and under-estimated cases. As the CFAD
also depends on the rain rate, and the overestimated population is as-
sociated with larger rain rate, the differences between the two popu-
lations may be difficult to interpret. Therefore, the analysis was made as
function of the microphysical parameters and classes of IWP.

The echo top analysis showed larger populations of cumuliform
clouds in the underestimated population when compared to the over-
estimated population that is more consistent with deep convective
clouds (> 9 km). The underestimated cloud top distributions change as
function of the error, with larger errors associated with lower cloud
tops. This corresponds physically to warm rainfall processes which have
significantly less ice. This lack of ice, in turn, causes the passive mi-
crowave retrievals that rely on ice scattering to severely underestimate
the rainfall. In contrast, the overestimated population is not a function
of the echo top. The relative amount of bias that is, does not appear to
change with the cloud top distribution.

Fig. 9. Density scatter plot of differences between the estimated precipitation rate from the TMI and PR and the differences between the brightness temperatures: a)
19–10 GHz; b) 21–10 GHz; and c) 37–21 GHz for all convective cases.
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The polarization signature shows the greatest contrast between the
over- and under-estimated cases. The underestimated population is
more prone to have positive values that are often associated with
horizontally oriented particles such as snow in stratiform precipitation.
The overestimated population, in contrast, exhibits polarization dif-
ferences close to zero. This is generally associated with the deep con-
vective regions with semi-spherical graupel or hail particles.
Overestimation errors do not appear to be a function of the polarization
difference.

Warmer values of PCT85 are common in the underestimated po-
pulation, in agreement with lower cloud tops and warm rain processes.
The overestimated population is associated with colder PCT85 but the
error is not a function of the PCT85 value. LWP diagnostics also showed
results similar to other findings. The underestimated population is
dominated by smaller values (LWP < 2 kgm−2) with the error corre-
lated to the LWP itself. Flash rates, which represent only few percent of
the cases in both populations, also show similar trends. The under-
estimated population has fewer flashes than the overestimated popu-
lation, as expected. The IWP distributions showed that the under-
estimated population has smaller values of IWP while the overestimated
cases have larger values of IWP. In this case, however, the bias was seen
to depend on the IWP itself. This feature clearly shows that over-
estimation errors are associated with the excess ice aloft. There is no
relationship in the overestimated cases with cloud top height, PCT85,
LWP or polarization. We speculate here that the ice excess could be
related to cloud life cycle issues when clouds have large amounts of ice
but small rain rates.

The reflectivity vertical profiles for under- and over-estimated cases
analyzed as a function of IWP classes and cloud top populations
(< 9 km vs>9 km) presented interesting results. The underestimated
cases have larger reflectivities values in lower levels than their over-
estimated counterparts, while the overestimated population of deep
convective clouds have higher reflectivity in the upper levels and
smaller reflectivities in the lower levels.

The final analysis examined whether additional channels in addition
to the scattering channels were useful predictors of the overall biases.
The radiance measured by the microwave sensors is a combination of
surface and cloud-atmosphere emission/scattering. Channel differences
can eliminate the surface emission if surface emissivities are similar.
Therefore, channel differences with 85 GHz and between more similar
wavelengths were tested to check their effectiveness in reproducing
observed bias structures. Results suggested that the error is reduced as
the positive differences between 10 and 19 GHz channels and ice
scattering channel (i.e. 85 GHz) increase. Using channels difference
among neighboring channels showed very little correlation with the
observed rainfall biases.

The results presented in this study show a fairly robust statistical
relationship between the ice in cloud structures and the bias from
passive microwave sensors over the Amazon. This knowledge can help
to establish adjustments to improve rainfall estimation over tropical
land regions.
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